【智能算法】秃鹰搜索算法(BES)原理及实现

在这里插入图片描述


1.背景

2020年, Alsattar等人受到秃鹰猎食自然行为启发,提出了秃鹰搜索算法(Bald Eagle Search,BES)。

2.算法原理

2.1算法思想

BES主要分为三个阶段选择搜索空间、搜索空间猎物和俯冲捕获猎物
在这里插入图片描述

2.2算法过程

选择搜索空间
秃鹰个体在飞行中的位置代表 1个可行解,在选择搜索空间阶段,秃鹰会挑选猎物聚集数量最多的区域当做搜索空间,该阶段的秃鹰行为由如下方程描述:
P i , n e w ( t ) = P b e s t ( t ) + α × r × ( P m e a n ( t ) − P i ( t ) ) (1) P_{i,\mathrm{new}}(t)=P_{\mathrm{best}}(t)+\alpha\times r\times(P_{\mathrm{mean}}(t)-P_{i}(t))\tag{1} Pi,new(t)=Pbest(t)+α×r×(Pmean(t)Pi(t))(1)
其中,Pi,new(t)表示第 i 只秃鹰的更新位置;Pbest(t)表示秃鹰最佳搜索位置;Pmean(t)表示秃鹰之前搜索结束后所有秃鹰个体的平均分布位置,Pi(t)表示第 i只秃鹰的搜索位置,称作领导者;t是当前迭代次数,参数 α∈[1.5,2]是控制秃鹰搜索位置的参数,参数 α 设置为 2;r 是取值范围在 0~1之间的随机数。
搜索空间猎物
秃鹰个体在完成选择目标搜索空间后,会在该搜索空间中对猎物进行“螺旋式”搜索,并向不同的方向飞行移动以加速搜索进程。该阶段的秃鹰行为如下方程描述:
P i , n e w ( t ) = P i ( t ) + x ( i ) × ( P i ( t ) − P m e a n ( t ) ) + y ( i ) × ( P i ( t ) − P i + 1 ( t ) ) x ( i ) = x r ( i ) max ⁡ ( ∣ x r ∣ ) , y ( i ) = y r ( i ) max ⁡ ( ∣ y r ∣ ) x r ( i ) = r ( i ) × sin ⁡ ( θ ( i ) ) , y r ( i ) = r ( i ) × cos ⁡ ( θ ( i ) ) θ ( i ) = a × π × r a n d , r ( i ) = θ ( i ) + R × r a n d (2) \begin{aligned} &P_{i,\mathrm{new}}(t)=P_{i}(t)+x(i)\times(P_{i}(t)-P_{\mathrm{mean}}(t))+y(i)\times \left(P_{i}(t)-P_{i+1}(t)\right) \\ &x(i)=\frac{x_{r}(i)}{\operatorname*{max}(\left|x_{r}\right|)},y(i)=\frac{y_{r}(i)}{\operatorname*{max}(\left|y_{r}\right|)} \\ &x_{_r}(i)=r(i)\times\sin(\theta(i)),y_{_r}(i)=r(i)\times\cos(\theta(i)) \\ &\theta(i)=a\times\pi\times\mathrm{rand},r(i)=\theta(i)+R\times\mathrm{rand} \end{aligned} \tag{2} Pi,new(t)=Pi(t)+x(i)×(Pi(t)Pmean(t))+y(i)×(Pi(t)Pi+1(t))x(i)=max(xr)xr(i),y(i)=max(yr)yr(i)xr(i)=r(i)×sin(θ(i)),yr(i)=r(i)×cos(θ(i))θ(i)=a×π×rand,r(i)=θ(i)+R×rand(2)
其中,x(i)与 y(i)表示极坐标中秃鹰的位置,取值范围均为(-1,1);θ(i)与 r(i)分别表示螺旋方程的极角与极径;a∈[5,10]与 R∈(0.5,2)表示控制秃鹰螺旋飞行轨迹的参数。
俯冲捕获猎物
秃鹰在搜索空间锁定目标猎物后,从最佳位置快速飞行至目标猎物位置,与此同时所有的秃鹰个体也会朝着最佳位置飞行移动。该阶段的秃鹰行为由如下方程描述:
P i , n e w ( t ) = r a n d × P b e s t ( t ) + x 1 ( i ) × ( P i ( t ) − c 1 × P m e a n ( t ) ) + y 1 ( i ) × ( P i ( t ) − c 2 × P b e s t ( t ) ) x 1 ( i ) = x r ( i ) max ⁡ ( ∣ x r ∣ ) , y 1 ( i ) = y r ( i ) max ⁡ ( ∣ y r ∣ ) x r ( i ) = r ( i ) × sinh ⁡ ( θ ( i ) ) , y r ( i ) = r ( i ) × cosh ⁡ ( θ ( i ) ) θ ( i ) = a × π × r a n d , r ( i ) = θ ( i ) (3) \begin{aligned} &&&P_{i,new}(t)=\mathrm{rand}\times P_{\mathrm{best}}(t)+x_{1}\left(i\right)\times\left(P_{i}(t)-c_{1}\times P_{\mathrm{mean}}(t)\right)+ y_{1}\left(i\right)\times\left(P_{i}(t)-c_{2}\times P_{\mathrm{best}}(t)\right) &&&& \\ &&&x_{1}\left(i\right)=\frac{x_{r}\left(i\right)}{\operatorname*{max}(\left|x_{r}\right|)},y_{1}\left(i\right)=\frac{y_{r}\left(i\right)}{\operatorname*{max}(\left|y_{r}\right|)}&& \\ &&&x_{r}(i)=r(i)\times\sinh\left(\theta(i)\right),y_{r}(i)=r(i)\times\cosh\left(\theta(i)\right)&& \\ &&&\theta(i)=a\times\pi\times\mathrm{rand},r(i)=\theta(i)&& \end{aligned}\tag{3} Pi,new(t)=rand×Pbest(t)+x1(i)×(Pi(t)c1×Pmean(t))+y1(i)×(Pi(t)c2×Pbest(t))x1(i)=max(xr)xr(i),y1(i)=max(yr)yr(i)xr(i)=r(i)×sinh(θ(i)),yr(i)=r(i)×cosh(θ(i))θ(i)=a×π×rand,r(i)=θ(i)(3)
伪代码
在这里插入图片描述

3.结果展示

在这里插入图片描述

4.参考文献

[1] Alsattar H A, Zaidan A A, Zaidan B B. Novel meta-heuristic bald eagle search optimisation algorithm[J]. Artificial Intelligence Review, 2020, 53: 2237-2264.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小O的算法实验室

谢谢大佬的肯定!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值