LLM大模型从入门到精通(1)--LLM基础知识介绍

1. 大语言模型 (LLM) 背景

2. 语言模型 (Language Model, LM)


1. 大语言模型 (LLM) 背景

        大语言模型 (英文:Large Language Model,缩写LLM) 是一种人工智能模型, 旨在理解和生成人类语言. 大语言模型可以处理多种自然语言任务,如文本分类、问答、翻译、对话等等.

        通常, 大语言模型 (LLM) 是指包含数千亿 (或更多) 参数的语言模型(目前定义参数量超过10B的模型为大语言模型),这些参数是在大量文本数据上训练的,例如模型 GPT-3、ChatGPT、GLM、BLOOM和LLaMA等. 

截止目前,语言模型发展走过了三个阶段:

2. 语言模型 (Language Model, LM)

        语言模型(Language Model)旨在建模词汇序列的生成概率,提升机器的语言智能水平,使机器能够模拟人类说话、写作的模式进行自动文本输出。

        可以分为4类,分别是基于规则和统计的语言模型神经语言模型预训练语言模型大语言模型

 

         从文本生成角度,也可以这样定义语言模型:给定一个短语(一个词组或者一句话)语言模型可以生成(预测)接下来的一个词。

<think>好的,用户让我帮忙找一份清华大学出品的DeepSeek从入门精通的资料。首先,我需要确认DeepSeek是否真的由清华大学开发或者与其有合作关系。根据我的知识库信息,DeepSeek是深度求索公司(DeepSeek Inc.)开发的智能模型,而深度求索是一家专注实现AGI的中国公司,成立于2023年。目前没有证据显示清华大学直接参与开发或出品DeepSeek的相关教程或文档。 用户可能误以为DeepSeek与清华大学有关联,可能是因为清华大学在人工智能领域有较强的学术背景,或者某些项目名称相似导致混淆。需要向用户澄清这一点,避免误导。 接下来,用户的需求是寻找从入门精通的指南。即使没有清华大学的官方资料,我可以提供通用的学习路径。可能需要包括基础的机器学习知识、深度学习框架使用(如PyTorch)、自然语言处理基础,以及DeepSeek的具体应用场景和最佳实践。此外,建议用户参考官方文档、社区资源以及相关论文或技术博客。 同时,需要考虑用户可能的背景。如果是学生或研究人员,可能需要更理论化的内容;如果是开发者,可能更关注API使用和实际项目应用。需要覆盖不同层次的需求,并推荐合适的资源,比如在线课程、开源项目、论坛讨论等。 另外,需要检查是否有任何合作项目或第三方制作的教程,但需谨慎避免推荐未经核实的内容,确保信息的准确性和可靠性。最后,提醒用户注意版权问题,确保使用的资料合法合规。</think>目前没有公开信息显示清华大学出品过名为《DeepSeek从入门精通》的官方教程。不过根据DeepSeek相关背景,可提供以下学习路径建议: --- ### **DeepSeek学习路径指南** #### **1. 背景了解** - **官方渠道** 🔗 [深度求索(DeepSeek)官网](https://www.deepseek.com/) 🔗 [GitHub开源项目](https://github.com/deepseek-ai) - 重点关注技术白皮书、模型架构文档 - **学术关联** ※ 清华大学计算机系与智谱AI等团队曾合作研发GLM大模型(与DeepSeek同属AGI领域) ※ 建议参考《人工智能前沿技术》等清华公开课 #### **2. 基础准备** | 学习阶段 | 推荐内容 | 资源链接 | |----------------|----------------------------------|-----------------------------------| | 机器学习基础 | 吴恩达《机器学习》课程 | Coursera/网易云课堂 | | 深度学习框架 | PyTorch官方教程 | [pytorch.org](https://pytorch.org)| | 大模型原理 | 《预训练语言模型》专著 | 电子工业出版社 | #### **3. DeepSeek专项学习** - **官方资源** ✅ 模型API文档 ✅ 开源代码解读(如DeepSeek-MoE) ✅ 技术博客(关注低参微调、多模态对齐等特性) - **实践项目** ```python # 示例:API调用 from deepseek import LLM model = LLM(model_name="deepseek-chat") response = model.generate("解释强化学习") ``` - **社区资源** 🚀 Hugging Face模型库 🚀 知乎/掘金技术专栏 🚀 AI Studio实战案例 #### **4. 进阶研究** - 论文精读:《DeepSeek MoE: Towards Ultimate Expert Specialization in Mixture-of-Experts》 - 清华大学交叉信息研究院相关讲座 - 国际顶会论文(NeurIPS/ICLR等) --- #### **⚠️ 重要提示** 1. 警惕非官方渠道的"内部资料" 2. 学术引用需核对论文来源 3. 企业合作项目需通过正规渠道申请 建议通过**深度求索官方技术社区**获取最新学习资源。如需清华相关AI课程资源,可访问: 🔗 [清华大学开放课程平台](https://www.xuetangx.com/) 🔗 清华计算机系《人工智能导论》公开课
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

哥兜兜有糖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值