一些可能多余的介绍
优点
1.传动比准确、传动平稳。
2.圆周速度大,高达300 m/s。
3.传动功率范围大,从几瓦到10万千瓦。
4.效率高(η→0.99)、使用寿命长、工作安全可靠。
5.可实现平行轴、相交轴和交错轴之间的传动。
缺点
1.要求较高的制造和安装精度
2.加工成本高
3.不适宜远距离传动(如单车)
分类
步入正文
传动比: 输入轴与输出轴的角速度或转速之比,即传动比 I= ω入/ω出=n入/n出 有大小和转向
I12=n1/n2=z2/z1,即两齿轮的齿数的反比。
齿廓啮合基本定律
满足齿廓啮合定律而又相互啮合的一对齿廓称为共轭齿廓
常见的齿廓曲线有 渐开线、摆线、圆弧、抛物线等
渐开线
当一直线BK 沿半径为rb的圆作纯滚动时,该直线上任一点K 的轨迹就是该圆的渐开线。
基圆rb ,发生线BK,向径rK=OK,压力角αK:K点所受正压力的方向与K点速度方向线之间所夹的锐角。
渐开线的性质
1. 发生线沿基圆滚过的直线长度等于被滚过的弧长,即 弧AB = BK。
2. 渐开线上任意点的法线必切于基圆。
3. 渐开线上越远离基圆的部分,其压力角越大。
4. 渐开线的形状取决于基圆大小。
5. 基圆内无渐开线。
渐开线齿廓的啮合特性
1.啮合线为直线,啮合角始终等于节圆压力角
2.传动比恒定
3.中心可分离性
传动比 i12=ω1/ω2=O2C/O1C=rb2/rb1,即基圆半径的反比
名称&符号
注意,齿根圆半径rf要比基圆半径rb小。
齿顶高与齿根高是依据分度圆为基准的与上下的距离。
齿数z,模数m,分度圆周长L= πd=zp =》 d=z p/π,模数m=p/π
标准齿轮,——m、α、ha*、c*均为标准值,且s = e的齿轮。
一对齿轮的正确啮合条件
两个齿轮的模数和压力角分别相等
无侧隙传动的条件
一个齿轮的节圆齿槽宽等于另一个齿轮的节圆齿厚。
标准齿轮标准安装
分度圆与节圆重合
啮合角等于分度圆的压力角
标准齿轮在分度圆处的齿厚等于齿槽宽即s=e=πm/2
标准中心距 a=r1’+r2’=r1+r2=m(z1+z2)/2
顶隙 C=c*×m,标准值
连续传动
为保证齿轮能连续传动,必须使前一对轮齿尚未脱离啮合时,后一对轮齿进入啮合。
刚好连续传动的条件:B1B2=pb,正常情况下,一般使B1B2 > pb
令ε=B1B2/pb —重合度,涵义:在齿轮传动过程中始终有ε(向下取整)个齿轮啮合
计算公式
几点需注意:
- 标准安装时,才会有分度圆与节圆重合
其它情况,分度圆按d=mz计算,节圆是相切的受中心距变化的影响,顶隙会变大(假设标准安装时中心距a,C会变成C = a‘-a+c* ×m)- 斜齿轮的计算,以法面模数mn为基准,有螺旋角β,
1,此时分度圆直径d=mnz/cosβ
2,标准中心距a=(d1+d2)/2
3,端面模数mt=mn/cosβ (不深入了)
本文只是个简略的复习笔记,仅供参考