概率论做题笔记(贝叶斯公式)

Knowledge points

1.条件概率
A A A B B B是两个事件,且 P ( A ) P(A) P(A) > > > 0 0 0,称

P ( B ∣ A ) = P ( A B ) P ( A ) P(B|A)=\frac{P\left(AB\right)}{P(A)} P(BA)=P(A)P(AB)

为在事件发生的条件下事件发生的条件概率.
2.乘法定理
P ( A ) P(A) P(A) > > > 0 0 0,则有
P ( A B ) = P ( B ∣ A ) P ( A ) P(AB)=P(B|A)P(A) P(AB)=P(BA)P(A)
上式称为乘法公式.还可以推广到多种情况,例如,设 A A A, B B B, C C C为事件,且 P ( A B ) P(AB) P(AB) > > > 0 0 0,则有
P ( A B C ) P(ABC) P(ABC) = = = P ( C ∣ A B ) P(C|AB) P(CAB) P ( B ∣ A ) P(B|A) P(BA) P ( A ) P(A) P(A).
3.全概率公式
设试验 E E E的样本空间为 S S S A A A E E E的事件, B 1 B_1 B1 B 2 B_2 B2,…, B n B_n Bn S S S的一个划分,且 P P P( B i B_i Bi) > > > 0 0 0 ( i i i = = = 1 1 1, 2 2 2,… n n n) 则
P ( A ) = P ( A ∣ B 1 ) P ( B 1 ) + P ( A ∣ B 2 ) P ( B 2 ) + . . . + P ( A ∣ B n ) P ( B n ) . P(A)=P(A|B_1)P(B_1)+P(A|B_2)P(B_2)+...+P(A|B_n)P(B_n). P(A)=P(AB1)P(B1)+P(AB2)P(B2)+...+P(ABn)P(Bn).
上式称为全概率公式.
4.贝叶斯公式
设试验 E E E的样本空间为 S S S. A A A E E E的事件, B 1 B_1 B1 B 2 B_2 B2,…, B n B_n Bn S S S的一个划分,且 P ( A ) P(A) P(A) > > > 0 0 0, P P P( B i B_i Bi) > > > 0 0 0 ( i i i = = = 1 1 1, 2 2 2,… n n n) 则
P ( B i ∣ A ) = P ( B i A ) P ( A ) = P ( A ∣ B i ) P ( B i ) ∑ j = 1 n P ( A ∣ B j ) P ( B j ) , i = 1 , 2 , ⋯   , n \mathrm{P}\left(B_{i} | A\right)=\frac{P\left(B_{i} A\right)}{P(A)}=\frac{P\left(A | B_{i}\right) P\left(B_{i}\right)}{\sum_{j=1}^{n} P\left(A | B_{j}\right) P\left(B_{j}\right)}, i=1,2, \cdots, n P(BiA)=P(A)P(BiA)=j=1nP(ABj)P(Bj)P(ABi)P(Bi),i=1,2,,n
上式称为贝叶斯公式.
5.独立性
A A A B B B是两个事件,如果满足等式
P ( A B ) = P ( A ) P ( B ) P(AB)=P(A)P(B) P(AB)=P(A)P(B)
则称事件 A , B A,B A,B相互独立,简称 A , B A,B A,B独立.

Question

例1·系统可靠性问题

试分别求以下两个系统的可靠性:
(1)设有4个独立工作的元件 1 , 2 , 3 , 4. 1,2,3,4. 1,2,3,4.它们的可靠性分别为 p 1 , p 2 , p 3 , p 4 , p1,p2,p3,p4, p1p2,p3,p4,将它们按图(1)的方式连接(称为并串联系统);
在这里插入图片描述

思路

可看作两个相互独立的系统: 1 − − − > 2 − − − > 3 1--->2--->3 1>2>3 1 − − − > 4 1--->4 1>4
A i A_i Ai表示事件“第 i i i个元件正常工作”, i = 1 , 2 , 3 , 4 i=1,2,3,4 i=1,2,3,4,以 A A A表示”系统正常工作“,因为各元件相互独立且有 P ( A i ) = P i ( i = 1 , 2 , 3 , 4 ) P(A_i)=P_i(i=1,2,3,4) P(Ai)=Pi(i=1,2,3,4),所以有:
A = A 1 A 2 A 3 ⋃ A 1 A 4 A=A_1A_2A_3{\bigcup}A_1A_4 A=A1A2A3A1A4
由加法公式及各元件工作的独立性得:
P ( A ) = P ( A 1 A 2 A 3 ) + P ( A 1 A 4 ) − P [ ( A 1 A 2 A 3 ) ⋂ ( A 1 A 4 ) ] P(A)=P(A_1A_2A_3)+P(A_1A_4)-P[(A_1A_2A_3){\bigcap}(A_1A_4)] P(A)=P(A1A2A3)+P(A1A4)P[(A1A2A3)(A1A4)]
= P ( A 1 ) P ( A 2 ) P ( A 3 ) + P ( A 1 ) P ( A 4 ) − P ( A 1 A 2 A 3 A 4 ) =P(A_1)P(A_2)P(A_3)+P(A_1)P(A_4)-P(A_1A_2A_3A_4) =P(A1)P(A2)P(A3)+P(A1)P(A4)P(A1A2A3A4)

Answer:

P ( A ) = p 1 p 4 + p 1 p 2 p 3 − p 1 p 2 p 3 p 4 P(A)=p_1p_4+p_1p_2p_3-p_1p_2p_3p_4 P(A)=p1p4+p1p2p3p1p2p3p4
(2)设有5个独立工作的元件 1 , 2 , 3 , 4 , 5. 1,2,3,4,5. 1,2,3,4,5.它们的可靠性均为 p , p, p,将它们按图(2)的方式连接(称为桥式系统).
在这里插入图片描述

思路

将元件3分为正常工作和失效两种情况,就可以将本题简化为第一问的并串联系统,由全概率公式:
P ( A ) = P ( A ∣ A 3 ) P ( A 3 ) + P ( A ∣ A 3 ‾ ) ( P ( A 3 ‾ ) P(A)=P(A|A_3)P(A_3)+P(A|{\overline{A_3}})(P({\overline{A_3}}) P(A)=P(AA3)P(A3)+P(AA3)(P(A3)
当系统正常工作时,系统简化成下列图(1)的情况:
在这里插入图片描述
此 时 P ( A ∣ A 3 ) = P [ ( A 1 ⋃ A 4 ) ( A 2 ⋃ A 5 ) ] 此时P(A|A_3)=P[(A_1{\bigcup}A_4)(A_2{\bigcup}A_5)] P(AA3)=P[(A1A4)(A2A5)]
当系统失效时,系统简化成下列图(2)的情况:
在这里插入图片描述
此 时 P ( A ∣ A 3 ‾ ) = P ( A 1 A 2 ⋃ A 4 A 5 ) 此时P(A|{\overline{A_3}})=P(A_1A_2{\bigcup}A_4A_5) P(AA3)=P(A1A2A4A5)
中间运算过程略去.

Answer:

P ( A ) = 2 p 2 + 2 p 3 − 5 p 4 + 2 p 5 P(A)=2p_2+2p_3-5p_4+2p_5 P(A)=2p2+2p35p4+2p5
例2·三门问题

假设你正在参加一个游戏节目.你看见三扇关闭了的门,其中一扇的后面有一辆汽车,另外两扇门后面则.各藏有一只山羊.选中后面有车的那扇门可赢得该汽车.你选定了一扇门,但没去打开它.知道门后面有什么的主持人打开了另一扇后面有山羊的门.主持人问你要不要换另一扇仍然关上的门.问题是:换另一扇门会增加你赢得汽车的概率吗?
在这里插入图片描述

必要的假设:

1.你选定了1号门,主持人打开了3号门;
2.汽车等可能放在某个门后面;
3.如果你选的1号门后面是羊,那么主持人肯定打开另一扇后面是羊的门;
4.如果你选的1号门后面是车,那么主持人以概率 p p p打开3号门,以概率 1 − p 1-p 1p打开2号门,这里 0 < = p < = 1 0<=p<=1 0<=p<=1

思路

B i B_i Bi= { i i i号门后面是车}, i i i=1,2,3, A A A= {主持人打开3号门},则
P ( B 1 ) = P ( B 1 2 ) = P ( B 3 ) = 1 / 3 , P ( A ∣ B 1 ) = p , P ( A ∣ B 2 ) = 1 , P ( A ∣ B 3 ) = 0 P(B_1)=P(B_12)=P(B_3)=1/3,P(A|B_1)=p,P(A|B_2)=1,P(A|B_3)=0 P(B1)=P(B12)=P(B3)=1/3,P(AB1)=p,P(AB2)=1,P(AB3)=0
由贝叶斯公式,不换能得到汽车的概率为
P ( B 1 ∣ A ) = P ( B 1 ) P ( A ∣ B 1 ) P ( B 1 ) P ( A ∣ B 1 ) + P ( B 2 ) P ( A ∣ B 2 ) + P ( B 3 ) P ( A ∣ B 3 ) = p 1 + p P\left(B_{1} | A\right)=\frac{P\left(B_{1}\right) P\left(A | B_{1}\right)}{P\left(B_{1}\right) P\left(A | B_{1}\right)+P\left(B_{2}\right) P\left(A | B_{2}\right)+P\left(B_{3}\right) P\left(A | B_{3}\right)}=\frac{p}{1+p} P(B1A)=P(B1)P(AB1)+P(B2)P(AB2)+P(B3)P(AB3)P(B1)P(AB1)=1+pp
因而换能得到汽车的概率为
1 1 + p \frac{1}{1+p} 1+p1

Answer:

1.当 p < 1 p<1 p<1时,换后得到汽车的概率更大;
2.当 p = p= p=时,换与不换得到汽车的概率都是 1 2 \frac{1}{2} 21
3.特别地当 p = 0 p=0 p=0时,如果1号门后面是车,则主持人一定打开2号门.所以如果主持人打开3号门,则意味着车一定在2号门后面,换能保证一定得到汽车.

  • 5
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值