线代打卡03

设 A 是 n 阶 方 阵 , 满 足 设A是n阶方阵,满足 An A m = E , A^m=E, Am=E, 其 中 m 为 正 整 数 , 将 A 中 的 元 素 a i j 用 其 代 数 余 子 式 A i j 代 替 得 到 的 矩 阵 记 为 B , 证 明 : 其中m为正整数,将A中的元素a_{ij}用其代数余子式A_{ij}代替得到的矩阵记为B,证明: mAaijAijB B m = E . B^m=E. Bm=E.
证 : 由 A m = A A m − 1 = E 可 知 A 为 可 逆 矩 阵 , 于 是 A ∗ 可 用 A − 1 来 表 示 , 即 证:由A^m=AA^{m-1}=E可知A为可逆矩阵,于是A^*可用A^{-1}来表示,即 Am=AAm1=EAAA1 A ∗ = ∣ A ∣ A − 1 A^*=|A|A^{-1} A=AA1
且 ∣ A ∣ m = ∣ A m ∣ = 1 且|A|^m=|A^m|=1 Am=Am=1 , 又 由 题 设 有 B = ( A i j ) n × n = ( A i j ) n × n T = ( A ∗ ) T . ,又由题设有B=(A_{ij})_{n×n}=(A_{ij})^T_{n×n}=(A^*)^T. ,B=(Aij)n×n=(Aij)n×nT=(A)T.
故 故 B m = [ ( A ∗ ) T ] m = [ ∣ A ∣ ( A − 1 ) T ] m = ∣ A ∣ m [ ( A m ) T ] − 1 = ∣ A ∣ m ( E T ) − 1 = E . B^m=[(A^*)^T]^m=[|A|(A^{-1})^T]^m=|A|^m[(A^m)^T]^{-1}=|A|^m(E^T)^{-1}=E. Bm=[(A)T]m=[A(A1)T]m=Am[(Am)T]1=Am(ET)1=E.

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值