多维随机变量及其分布(知识点部分02)

1.条件分布律

( X , Y ) (X,Y) (X,Y)是二维离散型随机变量,对于固定的 j j j,若 P { Y = y j } > 0 , P\{Y=y_{j}\}>0, P{Y=yj}>0,则称
P { X = x i ∣ Y = y j } = P { X = x i , Y = y j } P { Y = y j } = p i j p . j , i = 1 , 2 , … P\{X=x_{i}|Y=y_{j}\}=\frac{P\{X=x_{i},Y=y_{j}\}}{P\{Y=y_{j}\}}=\frac{p_{ij}}{p_{.j}},i=1,2,\dots P{X=xiY=yj}=P{Y=yj}P{X=xi,Y=yj}=p.jpij,i=1,2,
为在 Y = y j Y=y_j Y=yj条件下随机变量 X X X的条件分布律.
同样,对于固定的 i i i,若 P { X = x i } > 0 , P\{X=x_{i}\}>0, P{X=xi}>0,则称
P { Y = y j ∣ X = x i } = P { X = x i , Y = y j } P { X = x i } = p i j p i . , j = 1 , 2 , … P\{Y=y_{j}|X=x_{i}\}=\frac{P\{X=x_{i},Y=y_{j}\}}{P\{X=x_{i}\}}=\frac{p_{ij}}{p_{i.}},j=1,2,\dots P{Y=yjX=xi}=P{X=xi}P{X=xi,Y=yj}=pi.pij,j=1,2,
为在 X = x i X=x_i X=xi条件下随机变量Y的条件分布律.

2.条件概率密度

设二维随机变量 ( X , Y ) (X,Y) (X,Y)的概率密度为 f ( x , y ) , ( X , Y ) f(x,y),(X,Y) f(x,y),(X,Y)关于 Y Y Y的边缘概率密度为 f Y ( y ) . f_Y(y). fY(y).若对于固定的 Y , f Y ( y ) > 0 , Y,f_Y(y)>0, YfY(y)>0,则称 f ( x , y ) f Y ( y ) \frac{f(x,y)}{f_Y(y)} fY(y)f(x,y)为在 Y = y Y=y Y=y的条件下 X X X条件概率密度,记为
f X ∣ Y ( x ∣ y ) = f ( x , y ) f Y ( y ) . f_{X|Y}(x|y)=\frac{f(x,y)}{f_Y(y)}. fXY(xy)=fY(y)f(x,y).
∫ − ∞ x f X ∣ Y ( x ∣ y ) d x = ∫ − ∞ x f ( x , y ) f Y ( y ) d x \int_{-\infty}^{x}f_{X|Y}(x|y)dx=\int_{-\infty}^{x}\frac{f(x,y)}{f_Y(y)}dx xfXY(xy)dx=xfY(y)f(x,y)dx Y = y Y=y Y=y的条件下 X X X条件分布函数,记为 P { X ≤ x ∣ Y = y } P\{X \leq x|Y=y\} P{XxY=y} F X ∣ Y ( x ∣ y ) . F_{X|Y}(x|y). FXY(xy).
类似地,可以定义 f Y ∣ X ( y ∣ x ) = f ( x , y ) f X ( x ) f_{Y|X}(y|x)=\frac{f(x,y)}{f_X(x)} fYX(yx)=fX(x)f(x,y) F Y ∣ X ( y ∣ x ) = ∫ − ∞ y f ( x , y ) f X ( x ) . F_{Y|X}(y|x)=\int_{-\infty}^{y}\frac{f(x,y)}{f_X(x)}. FYX(yx)=yfX(x)f(x,y).

3.相互独立的随机变量

F ( x , y ) F(x,y) F(x,y) F X ( x ) , F Y ( y ) F_X(x),F_Y(y) FX(x),FY(y)分别是二维随机变量 ( X , Y ) (X,Y) (X,Y)的分布函数及边缘分布函数.若对于所有 x , y x,y x,y
P { X ≤ x , Y ≤ y } = P { X ≤ x } P { Y ≤ y } , 即 F ( x , y ) = F X ( x ) F Y ( y ) , P\{X \leq x,Y \leq y\}=P\{X \leq x\}P\{Y \leq y\},\\ 即F(x,y)=F_X(x)F_Y(y), P{Xx,Yy}=P{Xx}P{Yy},F(x,y)=FX(x)FY(y),
则称随机变量 X X X Y Y Y相互独立的.

4.结论

二维正态随机变量 ( X , Y ) (X,Y) (X,Y)的概率密度为
f ( x , y ) = 1 2 π σ 1 σ 2 1 − ρ 2 exp ⁡ { − 1 2 ( 1 − ρ 2 ) [ ( x − μ 1 ) 2 σ 1 2 − 2 ρ ( x − μ 1 ) ( y − μ 2 ) σ 1 σ 2 + ( y − μ 2 ) 2 σ 2 2 ] } f(x, y)=\frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}} \exp \left\{\frac{-1}{2\left(1-\rho^{2}\right)}\left[\frac{\left(x-\mu_{1}\right)^{2}}{\sigma_{1}^{2}}-2 \rho \frac{\left(x-\mu_{1}\right)\left(y-\mu_{2}\right)}{\sigma_{1} \sigma_{2}}+\frac{\left(y-\mu_{2}\right)^{2}}{\sigma_{2}^{2}}\right]\right\} f(x,y)=2πσ1σ21ρ2 1exp{2(1ρ2)1[σ12(xμ1)22ρσ1σ2(xμ1)(yμ2)+σ22(yμ2)2]}
对于二维正态随机变量 ( X , Y ) , X (X,Y),X (X,Y),X Y Y Y相互独立的充要条件是参数 ρ = 0. \rho=0. ρ=0.

5.定理

( X 1 , X 2 , … , X m ) (X_1,X_2,\dots,X_m) (X1,X2,,Xm) ( Y 1 , Y 2 , … , Y n ) (Y_1,Y_2,\dots,Y_n) (Y1,Y2,,Yn)相互独立,则 X i ( i = 1 , 2 , … , m ) X_i(i=1,2,\dots,m) Xi(i=1,2,,m) Y j ( j = 1 , 2 , … , n ) Y_j(j=1,2,\dots,n) Yj(j=1,2,,n)相互独立.又若 h , g h,g h,g是连续函数,则 h ( X 1 , X 2 , … , X m ) h(X_1,X_2,\dots,X_m) h(X1,X2,,Xm) g ( Y 1 , Y 2 , … , Y n ) g(Y_1,Y_2,\dots,Y_n) g(Y1,Y2,,Yn)相互独立.

6.Z=X+Y的分布

( X , Y ) (X,Y) (X,Y)是二维连续型随机变量,它具有概率密度 f ( x , y ) . f(x,y). f(x,y). Z = X + Y Z=X+Y Z=X+Y仍为连续型随机变量,其概率密度为
f X + Y ( z ) = ∫ − ∞ ∞ f ( z − y , y ) d y , 或 f X + Y ( z ) = ∫ − ∞ ∞ f ( x , z − x ) d x . f_{X+Y}(z)=\int_{-\infty}^{\infty}f(z-y,y)dy,\\ 或 f_{X+Y}(z)=\int_{-\infty}^{\infty}f(x,z-x)dx. fX+Y(z)=f(zy,y)dy,fX+Y(z)=f(x,zx)dx.
又若 X X X Y Y Y相互独立,设 ( X , Y ) (X,Y) (X,Y)关于 X , Y X,Y X,Y的边缘密度分别为 f X ( x ) , f Y ( y ) , f_X(x),f_Y(y), fX(x),fY(y),
f X + Y ( z ) = ∫ − ∞ ∞ f X ( z − y ) f Y ( y ) d y , f X + Y ( z ) = ∫ − ∞ ∞ f X ( x ) f Y ( z − x ) d x . f_{X+Y}(z)=\int_{-\infty}^{\infty}f_X(z-y)f_Y(y)dy, \\ f_{X+Y}(z)=\int_{-\infty}^{\infty}f_X(x)f_Y(z-x)dx. fX+Y(z)=fX(zy)fY(y)dy,fX+Y(z)=fX(x)fY(zx)dx.
这两个公式记为 f X f_X fX f Y f_Y fY的卷积公式,记为 f X ∗ f Y , f_X*f_Y, fXfY,
f X ∗ f Y = ∫ − ∞ ∞ f X ( z − y ) f Y ( y ) d y = ∫ − ∞ ∞ f X ( x ) f Y ( z − x ) d x . f_X*f_Y=\int_{-\infty}^{\infty}f_X(z-y)f_Y(y)dy=\int_{-\infty}^{\infty}f_X(x)f_Y(z-x)dx. fXfY=fX(zy)fY(y)dy=fX(x)fY(zx)dx.
Z = X + Y 的 分 布 函 数 为 Z=X+Y的分布函数为 Z=X+Y
F Z ( z ) = ∫ − ∞ ∞ [ ∫ − ∞ z f ( u − y , y ) d u ] d y = ∫ − ∞ z [ ∫ − ∞ ∞ f ( u − y , y ) d y ] d u . F_Z(z)=\int_{-\infty}^{\infty}[\int_{-\infty}^{z}f(u-y,y)du]dy=\int_{-\infty}^{z}[\int_{-\infty}^{\infty}f(u-y,y)dy]du. FZ(z)=[zf(uy,y)du]dy=z[f(uy,y)dy]du.

7.应用

有限个相互独立的正态随机变量的线性组合仍然服从正态分布.即
Z = X 1 + X 2 + ⋯ + X n ∼ N ( μ 1 + μ 2 + ⋯ + μ m , σ 1 2 + σ 2 2 + ⋯ + σ n 2 ) . Z=X_1+X_2+\dots+X_n \sim N(\mu_1+\mu_2+\dots+\mu_m,{\sigma_1}^2+{\sigma_2}^2+\dots+{\sigma_n}^2). Z=X1+X2++XnN(μ1+μ2++μm,σ12+σ22++σn2).

8.卡方分布( Γ \Gamma Γ)分布

n n n个相互独立的随机变量 ξ ₁ , ξ ₂ , . . . , ξ n , ξ₁,ξ₂,...,ξn , ξ,ξ,...,ξn,均服从标准正态分布(也称独立同分布于标准正态分布),则这n个服从标准正态分布的随机变量的平方和构成一新的随机变量,其分布规律称为卡方分布(chi-square distribution).
设随机变量 X , Y X,Y X,Y相互独立,且分别服从参数为 α , θ , ; β , θ \alpha,\theta,;\beta,\theta α,θ,;β,θ Γ \Gamma Γ分布(分别记作 X ∼ Γ ( α , θ ) , Y ∼ Γ ( β , θ ) ) . X , Y X \sim \Gamma(\alpha,\theta),Y \sim \Gamma(\beta,\theta)).X,Y XΓ(α,θ),YΓ(β,θ)).X,Y的概率密度分别为
f X ( x ) = { 1 θ α Γ ( α ) x α − 1 e − x θ , x > 0 , α > 0 , θ > 0. 0 , 其 他 , f Y ( y ) = { 1 θ β Γ ( β ) x β − 1 e − y θ , x > 0 , β > 0 , θ > 0. 0 , 其 他 , f_X(x)= \left\{\begin{aligned} &\frac{1}{\theta^\alpha\Gamma(\alpha)}x^{\alpha-1}e^{-\frac{x}{\theta}}, x>0,\alpha>0,\theta>0.\\ &0,其他,\\ \end{aligned}\right.\\ f_Y(y)= \left\{\begin{aligned} &\frac{1}{\theta^\beta\Gamma(\beta)}x^{\beta-1}e^{-\frac{y}{\theta}}, x>0,\beta>0,\theta>0.\\ &0,其他,\\ \end{aligned}\right. fX(x)=θαΓ(α)1xα1eθx,x>0,α>0,θ>0.0,,fY(y)=θβΓ(β)1xβ1eθy,x>0,β>0,θ>0.0,,
且有 X + Y ∼ Γ ( α + β , θ ) . X+Y \sim \Gamma(\alpha+\beta,\theta). X+YΓ(α+β,θ).(可加性)

9. Z = Y X Z=\frac{Y}{X} Z=XY的分布 Z = X Y Z=XY Z=XY的分布

( X , Y ) (X,Y) (X,Y)是二维连续型随机变量,它具有概率密度 f ( x , y ) , f(x,y), f(x,y), Z = Y X , Z = X Y Z=\frac{Y}{X},Z=XY Z=XY,Z=XY仍为连续型随机变量,其概率密度分别为
f Y / X ( z ) = ∫ − ∞ ∞ ∣ x ∣ f ( x , x z ) d x , f X Y ( z ) = ∫ − ∞ ∞ 1 ∣ x ∣ f ( x , z x ) d x . f_{Y/X}(z)=\int_{-\infty}^{\infty}|x|f(x,xz)dx,\\ f_{XY}(z)=\int_{-\infty}{\infty}\frac{1}{|x|}f(x,\frac{z}{x})dx. fY/X(z)=xf(x,xz)dx,fXY(z)=x1f(x,xz)dx.
又若 X X X Y Y Y相互独立.设 ( X , Y ) (X,Y) (X,Y)关于 X , Y X,Y X,Y的边缘密度分别为 f X ( x ) , f Y ( y ) f_X(x),f_Y(y) fX(x),fY(y),则
f Y / X ( z ) = ∫ − ∞ ∞ ∣ x ∣ f X ( x ) f Y ( x z ) d x . f X Y ( z ) = ∫ − ∞ ∞ 1 ∣ x ∣ f X ( x ) f Y ( z x ) d x . f_{Y/X}(z)=\int_{-\infty}^{\infty}|x|f_X(x)f_Y(xz)dx.\\ f_{XY}(z)=\int_{-\infty}^{\infty}\frac{1}{|x|}f_X(x)f_Y(\frac{z}{x})dx. fY/X(z)=xfX(x)fY(xz)dx.fXY(z)=x1fX(x)fY(xz)dx.

10.M=max{X,Y}及N=min{X,Y}的分布

M = m a x { X , Y } M=max\{X,Y\} M=max{X,Y}的分布函数为
F m a x ( z ) = F x ( z ) F Y ( z ) . F_{max}(z)=F_x(z)F_Y(z). Fmax(z)=Fx(z)FY(z).
M = m a x { X 1 , X 2 , … , X n } M=max\{X_1,X_2,\dots,X_n\} M=max{X1,X2,,Xn}的分布函数为
F m a x ( z ) = F X 1 ( z ) F X 2 ( z ) … F X n ( z ) . F_{max}(z)=F_{X_1}(z)F_{X_2}(z)\dots F_{X_n}(z). Fmax(z)=FX1(z)FX2(z)FXn(z).
N = m i n { X , Y } N=min\{X,Y\} N=min{X,Y}的分布函数为
F m i n ( z ) = 1 − [ 1 − F X ( z ) ] [ 1 − F Y ( z ) ] . F_{min}(z)=1-[1-F_X(z)][1-F_Y(z)]. Fmin(z)=1[1FX(z)][1FY(z)].
N = m i n { X 1 , X 2 , … , X n } N=min\{X_1,X_2,\dots,X_n\} N=min{X1,X2,,Xn}的分布函数为
F m i n ( z ) = 1 − [ 1 − F X 1 ( z ) ] [ 1 − F X 2 ( z ) ] … [ 1 − F X n ( z ) ] . F_{min}(z)=1-[1-F_{X_1}(z)][1-F_{X_2}(z)] \dots[1-F_{X_n}(z)]. Fmin(z)=1[1FX1(z)][1FX2(z)][1FXn(z)].

  • 4
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值