1.分布函数
设
(
X
,
Y
)
是
二
维
随
机
变
量
,
对
于
任
意
实
数
x
,
y
,
二
元
函
数
:
设(X,Y)是二维随机变量,对于任意实数x,y,二元函数:
设(X,Y)是二维随机变量,对于任意实数x,y,二元函数:
F
(
x
,
y
)
=
P
{
X
⩽
x
)
⋂
(
Y
⩽
y
)
}
=
记
成
P
{
X
⩽
Y
⩽
y
}
F(x,y)=P\{X \leqslant x)\bigcap(Y \leqslant y)\}\xlongequal{记成}P\{X \leqslant Y \leqslant y\}
F(x,y)=P{X⩽x)⋂(Y⩽y)}记成P{X⩽Y⩽y}
称
为
二
维
随
机
变
量
(
X
,
Y
)
的
分
布
函
数
,
或
称
为
随
机
变
量
X
和
Y
的
联
合
分
布
函
数
.
称为二维随机变量(X,Y)的分布函数,或称为随机变量X和Y的联合分布函数.
称为二维随机变量(X,Y)的分布函数,或称为随机变量X和Y的联合分布函数.
2.离散型随机变量
如 果 二 维 随 机 变 量 ( X , Y ) 全 部 可 能 取 到 的 值 是 有 限 对 或 可 列 无 限 多 对 , 则 称 ( X , Y ) 是 离 散 型 的 随 机 变 量 , 称 P { X = x i , Y = y i } = p i j , i , j = 1 , 2 , … 为 二 维 离 散 型 随 机 变 量 ( X , Y ) 的 分 布 律 , 或 称 为 随 机 变 量 X 和 Y 的 联 合 分 布 律 . 如果二维随机变量(X,Y)全部可能取到的值是有限对或可列无限多对,则称(X,Y)是离散型的随机变量,称P\{X=x_i,Y=y_i\}=p_{ij},i,j=1,2,\dots为二维离散型随机变量(X,Y)的分布律,或称为随机变量X和Y的联合分布律. 如果二维随机变量(X,Y)全部可能取到的值是有限对或可列无限多对,则称(X,Y)是离散型的随机变量,称P{X=xi,Y=yi}=pij,i,j=1,2,…为二维离散型随机变量(X,Y)的分布律,或称为随机变量X和Y的联合分布律.
3.连续型随机变量
对
于
二
维
随
机
变
量
(
X
,
Y
)
的
分
布
函
数
F
(
x
,
y
)
,
如
果
存
在
非
负
可
积
函
数
f
(
x
,
y
)
使
对
于
任
意
x
,
y
有
对于二维随机变量(X,Y)的分布函数F(x,y),如果存在非负可积函数f(x,y)使对于任意x,y有
对于二维随机变量(X,Y)的分布函数F(x,y),如果存在非负可积函数f(x,y)使对于任意x,y有
F
(
x
,
y
)
=
∫
−
∞
y
∫
−
∞
x
f
(
u
,
v
)
d
u
d
v
,
F(x,y)=\int_{-\infty}^{y}\int_{-\infty}^{x}f(u,v)dudv,
F(x,y)=∫−∞y∫−∞xf(u,v)dudv,
则
称
(
X
,
Y
)
是
连
续
型
的
二
维
随
机
变
量
,
函
数
f
(
x
,
y
)
称
为
二
维
随
机
变
量
(
X
,
Y
)
的
概
率
密
度
,
或
称
为
随
机
变
量
X
和
Y
的
联
合
概
率
密
度
.
则称(X,Y)是连续型的二维随机变量,函数f(x,y)称为二维随机变量(X,Y)的概率密度,或称为随机变量X和Y的联合概率密度.
则称(X,Y)是连续型的二维随机变量,函数f(x,y)称为二维随机变量(X,Y)的概率密度,或称为随机变量X和Y的联合概率密度.
4.概率密度f(x,y)的性质
∂ 2 F ( x , y ) ∂ x ∂ y = f ( x , y ) . \frac{\partial^2F(x,y)}{\partial x \partial y}=f(x,y). ∂x∂y∂2F(x,y)=f(x,y).
5.边缘分布
X
和
Y
的
分
布
函
数
F
x
(
x
)
,
F
y
(
y
)
称
为
二
维
随
机
变
量
(
X
,
Y
)
关
于
X
和
关
于
Y
的
边
缘
分
布
函
数
.
X
的
分
布
律
为
X和Y的分布函数F_x(x),F_y(y)称为二维随机变量(X,Y)关于X和关于Y的边缘分布函数.X的分布律为
X和Y的分布函数Fx(x),Fy(y)称为二维随机变量(X,Y)关于X和关于Y的边缘分布函数.X的分布律为
p
i
.
=
∑
j
=
1
∞
=
P
{
X
=
x
i
}
,
i
=
1
,
2
,
…
,
p_{i.}=\sum_{j=1}^{\infty}=P\{X=x_i\},i=1,2,\dots,
pi.=j=1∑∞=P{X=xi},i=1,2,…,
Y
的
分
布
律
为
Y的分布律为
Y的分布律为
p
.
j
=
∑
i
=
1
∞
=
P
{
Y
=
y
j
}
,
j
=
1
,
2
,
…
,
p_{.j}=\sum_{i=1}^{\infty}=P\{Y=y_j\},j=1,2,\dots,
p.j=i=1∑∞=P{Y=yj},j=1,2,…,
分
别
称
P
i
.
(
i
=
1
,
2
,
…
)
和
P
.
j
(
j
=
1
,
2
,
…
)
为
(
X
,
Y
)
关
于
X
和
关
于
Y
的
边
缘
分
布
律
.
分别称P_{i.}(i=1,2,\dots)和P_{.j}(j=1,2,\dots)为(X,Y)关于X和关于Y的边缘分布律.
分别称Pi.(i=1,2,…)和P.j(j=1,2,…)为(X,Y)关于X和关于Y的边缘分布律.
6.边缘概率密度
X
的
概
率
密
度
为
X的概率密度为
X的概率密度为
f
x
(
x
)
=
∫
−
∞
∞
f
(
x
,
y
)
d
y
.
f_x{(x)}=\int_{-\infty}^{\infty}f(x,y)dy.
fx(x)=∫−∞∞f(x,y)dy.
Y
的
概
率
密
度
为
Y的概率密度为
Y的概率密度为
f
Y
(
y
)
=
∫
−
∞
∞
f
(
x
,
y
)
d
x
.
f_Y{(y)}=\int_{-\infty}^{\infty}f(x,y)dx.
fY(y)=∫−∞∞f(x,y)dx.
分
别
称
f
x
(
x
)
,
f
Y
(
y
)
为
(
X
,
Y
)
关
于
X
和
关
于
Y
的
边
缘
概
率
密
度
.
分别称f_x{(x)},f_Y{(y)}为(X,Y)关于X和关于Y的边缘概率密度.
分别称fx(x),fY(y)为(X,Y)关于X和关于Y的边缘概率密度.
7.二维正态分布
设
二
维
随
机
变
量
(
X
,
Y
)
的
概
率
密
度
为
设二维随机变量(X,Y)的概率密度为
设二维随机变量(X,Y)的概率密度为
f
(
x
,
y
)
=
1
2
π
σ
1
σ
2
1
−
ρ
2
exp
{
−
1
2
(
1
−
ρ
2
)
[
(
x
−
μ
1
)
2
σ
1
2
−
2
ρ
(
x
−
μ
1
)
(
y
−
μ
2
)
σ
1
σ
2
+
(
y
−
μ
2
)
2
σ
2
2
]
}
f(x, y)=\frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}} \exp \left\{\frac{-1}{2\left(1-\rho^{2}\right)}\left[\frac{\left(x-\mu_{1}\right)^{2}}{\sigma_{1}^{2}}-2 \rho \frac{\left(x-\mu_{1}\right)\left(y-\mu_{2}\right)}{\sigma_{1} \sigma_{2}}+\frac{\left(y-\mu_{2}\right)^{2}}{\sigma_{2}^{2}}\right]\right\}
f(x,y)=2πσ1σ21−ρ21exp{2(1−ρ2)−1[σ12(x−μ1)2−2ρσ1σ2(x−μ1)(y−μ2)+σ22(y−μ2)2]}
其
中
μ
1
,
μ
2
,
σ
1
,
σ
2
,
ρ
都
是
常
数
,
且
σ
1
>
0
,
σ
2
>
0
,
−
1
<
ρ
<
1.
我
们
称
(
X
,
Y
)
为
服
从
参
数
为
μ
1
,
μ
2
,
σ
1
,
σ
2
,
ρ
的
二
维
正
态
分
布
,
记
为
(
X
,
Y
)
∼
N
(
μ
1
,
μ
2
,
σ
1
,
σ
2
,
ρ
)
.
其中\mu_1,\mu_2,\sigma_1,\sigma_2,\rho都是常数,且\sigma_1>0,\sigma_2>0,-1<\rho<1.我们称(X,Y)为服从参数为\mu_1,\mu_2,\sigma_1,\sigma_2,\rho的二维正态分布,记为(X,Y)\sim N(\mu_1,\mu_2,\sigma_1,\sigma_2,\rho).
其中μ1,μ2,σ1,σ2,ρ都是常数,且σ1>0,σ2>0,−1<ρ<1.我们称(X,Y)为服从参数为μ1,μ2,σ1,σ2,ρ的二维正态分布,记为(X,Y)∼N(μ1,μ2,σ1,σ2,ρ).
8.二维正态随机变量的边缘概率密度
f
x
(
x
)
=
1
2
π
σ
1
e
−
(
x
−
μ
1
)
2
2
σ
1
2
,
−
∞
<
x
<
∞
f_x(x)=\frac{1}{\sqrt{2 \pi} \sigma_1} \mathrm{e}^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}},-\infty<x<\infty
fx(x)=2πσ11e−2σ12(x−μ1)2,−∞<x<∞
f
Y
(
y
)
=
1
2
π
σ
2
e
−
(
y
−
μ
2
)
2
2
σ
2
2
,
−
∞
<
y
<
∞
f_Y(y)=\frac{1}{\sqrt{2 \pi} \sigma_2} \mathrm{e}^{-\frac{(y-\mu_2)^2}{2\sigma_2^2}},-\infty<y<\infty
fY(y)=2πσ21e−2σ22(y−μ2)2,−∞<y<∞