多维随机变量及其分布(知识点部分01)

1.分布函数

设 ( X , Y ) 是 二 维 随 机 变 量 , 对 于 任 意 实 数 x , y , 二 元 函 数 : 设(X,Y)是二维随机变量,对于任意实数x,y,二元函数: (X,Y)x,y,:
F ( x , y ) = P { X ⩽ x ) ⋂ ( Y ⩽ y ) } = 记 成 P { X ⩽ Y ⩽ y } F(x,y)=P\{X \leqslant x)\bigcap(Y \leqslant y)\}\xlongequal{记成}P\{X \leqslant Y \leqslant y\} F(x,y)=P{Xx)(Yy)} P{XYy}
称 为 二 维 随 机 变 量 ( X , Y ) 的 分 布 函 数 , 或 称 为 随 机 变 量 X 和 Y 的 联 合 分 布 函 数 . 称为二维随机变量(X,Y)的分布函数,或称为随机变量X和Y的联合分布函数. (X,Y)XY.

2.离散型随机变量

如 果 二 维 随 机 变 量 ( X , Y ) 全 部 可 能 取 到 的 值 是 有 限 对 或 可 列 无 限 多 对 , 则 称 ( X , Y ) 是 离 散 型 的 随 机 变 量 , 称 P { X = x i , Y = y i } = p i j , i , j = 1 , 2 , … 为 二 维 离 散 型 随 机 变 量 ( X , Y ) 的 分 布 律 , 或 称 为 随 机 变 量 X 和 Y 的 联 合 分 布 律 . 如果二维随机变量(X,Y)全部可能取到的值是有限对或可列无限多对,则称(X,Y)是离散型的随机变量,称P\{X=x_i,Y=y_i\}=p_{ij},i,j=1,2,\dots为二维离散型随机变量(X,Y)的分布律,或称为随机变量X和Y的联合分布律. (X,Y)(X,Y)P{X=xi,Y=yi}=pij,i,j=1,2,(X,Y)XY.

3.连续型随机变量

对 于 二 维 随 机 变 量 ( X , Y ) 的 分 布 函 数 F ( x , y ) , 如 果 存 在 非 负 可 积 函 数 f ( x , y ) 使 对 于 任 意 x , y 有 对于二维随机变量(X,Y)的分布函数F(x,y),如果存在非负可积函数f(x,y)使对于任意x,y有 (X,Y)F(x,y),f(x,y)使x,y
F ( x , y ) = ∫ − ∞ y ∫ − ∞ x f ( u , v ) d u d v , F(x,y)=\int_{-\infty}^{y}\int_{-\infty}^{x}f(u,v)dudv, F(x,y)=yxf(u,v)dudv,
则 称 ( X , Y ) 是 连 续 型 的 二 维 随 机 变 量 , 函 数 f ( x , y ) 称 为 二 维 随 机 变 量 ( X , Y ) 的 概 率 密 度 , 或 称 为 随 机 变 量 X 和 Y 的 联 合 概 率 密 度 . 则称(X,Y)是连续型的二维随机变量,函数f(x,y)称为二维随机变量(X,Y)的概率密度,或称为随机变量X和Y的联合概率密度. (X,Y)f(x,y)(X,Y)XY.

4.概率密度f(x,y)的性质

∂ 2 F ( x , y ) ∂ x ∂ y = f ( x , y ) . \frac{\partial^2F(x,y)}{\partial x \partial y}=f(x,y). xy2F(x,y)=f(x,y).

5.边缘分布

X 和 Y 的 分 布 函 数 F x ( x ) , F y ( y ) 称 为 二 维 随 机 变 量 ( X , Y ) 关 于 X 和 关 于 Y 的 边 缘 分 布 函 数 . X 的 分 布 律 为 X和Y的分布函数F_x(x),F_y(y)称为二维随机变量(X,Y)关于X和关于Y的边缘分布函数.X的分布律为 XYFx(x),Fy(y)(X,Y)XY.X p i . = ∑ j = 1 ∞ = P { X = x i } , i = 1 , 2 , … , p_{i.}=\sum_{j=1}^{\infty}=P\{X=x_i\},i=1,2,\dots, pi.=j=1=P{X=xi},i=1,2,,
Y 的 分 布 律 为 Y的分布律为 Y
p . j = ∑ i = 1 ∞ = P { Y = y j } , j = 1 , 2 , … , p_{.j}=\sum_{i=1}^{\infty}=P\{Y=y_j\},j=1,2,\dots, p.j=i=1=P{Y=yj},j=1,2,,
分 别 称 P i . ( i = 1 , 2 , …   ) 和 P . j ( j = 1 , 2 , …   ) 为 ( X , Y ) 关 于 X 和 关 于 Y 的 边 缘 分 布 律 . 分别称P_{i.}(i=1,2,\dots)和P_{.j}(j=1,2,\dots)为(X,Y)关于X和关于Y的边缘分布律. Pi.(i=1,2,)P.j(j=1,2,)(X,Y)XY.

6.边缘概率密度

X 的 概 率 密 度 为 X的概率密度为 X
f x ( x ) = ∫ − ∞ ∞ f ( x , y ) d y . f_x{(x)}=\int_{-\infty}^{\infty}f(x,y)dy. fx(x)=f(x,y)dy.
Y 的 概 率 密 度 为 Y的概率密度为 Y
f Y ( y ) = ∫ − ∞ ∞ f ( x , y ) d x . f_Y{(y)}=\int_{-\infty}^{\infty}f(x,y)dx. fY(y)=f(x,y)dx.
分 别 称 f x ( x ) , f Y ( y ) 为 ( X , Y ) 关 于 X 和 关 于 Y 的 边 缘 概 率 密 度 . 分别称f_x{(x)},f_Y{(y)}为(X,Y)关于X和关于Y的边缘概率密度. fx(x),fY(y)(X,Y)XY.

7.二维正态分布

设 二 维 随 机 变 量 ( X , Y ) 的 概 率 密 度 为 设二维随机变量(X,Y)的概率密度为 (X,Y)
f ( x , y ) = 1 2 π σ 1 σ 2 1 − ρ 2 exp ⁡ { − 1 2 ( 1 − ρ 2 ) [ ( x − μ 1 ) 2 σ 1 2 − 2 ρ ( x − μ 1 ) ( y − μ 2 ) σ 1 σ 2 + ( y − μ 2 ) 2 σ 2 2 ] } f(x, y)=\frac{1}{2 \pi \sigma_{1} \sigma_{2} \sqrt{1-\rho^{2}}} \exp \left\{\frac{-1}{2\left(1-\rho^{2}\right)}\left[\frac{\left(x-\mu_{1}\right)^{2}}{\sigma_{1}^{2}}-2 \rho \frac{\left(x-\mu_{1}\right)\left(y-\mu_{2}\right)}{\sigma_{1} \sigma_{2}}+\frac{\left(y-\mu_{2}\right)^{2}}{\sigma_{2}^{2}}\right]\right\} f(x,y)=2πσ1σ21ρ2 1exp{2(1ρ2)1[σ12(xμ1)22ρσ1σ2(xμ1)(yμ2)+σ22(yμ2)2]}
其 中 μ 1 , μ 2 , σ 1 , σ 2 , ρ 都 是 常 数 , 且 σ 1 > 0 , σ 2 > 0 , − 1 < ρ < 1. 我 们 称 ( X , Y ) 为 服 从 参 数 为 μ 1 , μ 2 , σ 1 , σ 2 , ρ 的 二 维 正 态 分 布 , 记 为 ( X , Y ) ∼ N ( μ 1 , μ 2 , σ 1 , σ 2 , ρ ) . 其中\mu_1,\mu_2,\sigma_1,\sigma_2,\rho都是常数,且\sigma_1>0,\sigma_2>0,-1<\rho<1.我们称(X,Y)为服从参数为\mu_1,\mu_2,\sigma_1,\sigma_2,\rho的二维正态分布,记为(X,Y)\sim N(\mu_1,\mu_2,\sigma_1,\sigma_2,\rho). μ1,μ2,σ1,σ2,ρσ1>0,σ2>0,1<ρ<1.(X,Y)μ1,μ2,σ1,σ2,ρ(X,Y)N(μ1,μ2,σ1,σ2,ρ).

8.二维正态随机变量的边缘概率密度

f x ( x ) = 1 2 π σ 1 e − ( x − μ 1 ) 2 2 σ 1 2 , − ∞ < x < ∞ f_x(x)=\frac{1}{\sqrt{2 \pi} \sigma_1} \mathrm{e}^{-\frac{(x-\mu_1)^2}{2\sigma_1^2}},-\infty<x<\infty fx(x)=2π σ11e2σ12(xμ1)2,<x<
f Y ( y ) = 1 2 π σ 2 e − ( y − μ 2 ) 2 2 σ 2 2 , − ∞ < y < ∞ f_Y(y)=\frac{1}{\sqrt{2 \pi} \sigma_2} \mathrm{e}^{-\frac{(y-\mu_2)^2}{2\sigma_2^2}},-\infty<y<\infty fY(y)=2π σ21e2σ22(yμ2)2,<y<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值