百分比收益率和对数收益率

股市中常用的收益率是百分比收益率,而对数收益率在金融理论中用的较多。
百分比收益率定义: R b = ( s 2 − s 1 ) / s 1 = s 2 / s 1 − 1 R_b=(s_2-s_1)/s_1=s_2/s_1-1 Rb=(s2s1)/s1=s2/s11
对数收益率定义: R d = l n ( s 2 / s 1 ) R_d=ln(s_2/s_1) Rd=ln(s2/s1)
其中, s 1 , s 2 s_1,s_2 s1,s2为连续各期的股价。
显然, R d = l n ( R b + 1 ) R_d=ln(R_b+1) Rd=ln(Rb+1)
(1)不对称性
比如股价s从50升到100再跌回50,股价的变化是0。
对于 R b R_b Rb:
R b 1 = 100 / 50 − 1 = 100 % R_{b_1}=100/50-1=100\% Rb1=100/501=100%
R b 2 = 50 / 100 − 1 = − 50 % R_{b_2}=50/100-1=-50\% Rb2=50/1001=50%
也即股价s对称地上升和下降同样的数字,其百分比收益率绝对值是不同的,也即是不对称的。
对于 R b R_b Rb:
R d 1 = l n ( 100 / 50 ) = 69 % R_{d_1}=ln(100/50)=69\% Rd1=ln(100/50)=69%
R d 1 = l n ( 50 / 100 ) = − 69 % R_{d_1}=ln(50/100)=-69\% Rd1=ln(50/100)=69%
l n ( x / y ) = − l n ( y / x ) ln(x/y)=-ln(y/x) ln(x/y)=ln(y/x)
因此对数收益率是对称的。
本质上log return是复利期趋向无限时的期限收益率。
(2)解释
如果我们考察单一投资品在总共 T 期内的表现,那应该用对数收益率,而非算术收益率。算术平均值不能正确的反应一个投资品的收益率。
比如一个投资品今年涨了 50%,明年跌了 50%,它的算术平均收益率为 0;但事实上,两年后该投资品亏损了最初资金的 25%。
1元涨50%变为1*(1+50%)=1.5元,算术收益率=(1.5-1)/1=50%
1.5元跌50%变为1.5*(1-50%)=0.75元,算术收益率=(0.75-1.5)/0.75=-50%
算术平均收益率=(50%-50%)/2=0
但是,从1元变成0.75元,亏了(1-0.75)/1=25%
这两年的对数收益率分别为:
ln(1.5/1)= 40.5465% 和 ln(0.75/1.5)=-69.3147%,
-69.3147%+40.5465% = -28.7682%(加和的原因是我们是考察在总共T期内的表现),
转换为百分比亏损就是 exp{-28.7682%} - 1 = -25%。
对数收益率的最大好处是它的可加性,把单期的对数收益率相加就得到整体的对数收益率。并且对数收益率可以假设服从正态分布,这是simple return做不到的。
l n ( s t / s 0 ) = l n ( s t / s t − 1 ∗ s t − 1 / s t − 1 ∗ ⋯ ∗ s 1 / s 0 ) ⇒ l n ( s t / s 0 ) = l n ( s t / s t − 1 ) + l n ( s t − 1 / s t − 1 ) + ⋯ + l n ( s 1 / s 0 ) ln(s_t/s_0)=ln(s_t/s_{t-1}*s_{t-1}/s_{t-1}*\cdots*s_1/s_0)\\ \Rightarrow ln(s_t/s_0)=ln(s_t/s_{t-1})+ln(s_{t-1}/s_{t-1})+\cdots+ln(s_1/s_0) ln(st/s0)=ln(st/st1st1/st1s1/s0)ln(st/s0)=ln(st/st1)+ln(st1/st1)++ln(s1/s0)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值