股市中常用的收益率是百分比收益率,而对数收益率在金融理论中用的较多。
百分比收益率定义:
R
b
=
(
s
2
−
s
1
)
/
s
1
=
s
2
/
s
1
−
1
R_b=(s_2-s_1)/s_1=s_2/s_1-1
Rb=(s2−s1)/s1=s2/s1−1
对数收益率定义:
R
d
=
l
n
(
s
2
/
s
1
)
R_d=ln(s_2/s_1)
Rd=ln(s2/s1)
其中,
s
1
,
s
2
s_1,s_2
s1,s2为连续各期的股价。
显然,
R
d
=
l
n
(
R
b
+
1
)
R_d=ln(R_b+1)
Rd=ln(Rb+1)
(1)不对称性
比如股价s从50升到100再跌回50,股价的变化是0。
对于
R
b
R_b
Rb:
R
b
1
=
100
/
50
−
1
=
100
%
R_{b_1}=100/50-1=100\%
Rb1=100/50−1=100%
R
b
2
=
50
/
100
−
1
=
−
50
%
R_{b_2}=50/100-1=-50\%
Rb2=50/100−1=−50%
也即股价s对称地上升和下降同样的数字,其百分比收益率绝对值是不同的,也即是不对称的。
对于
R
b
R_b
Rb:
R
d
1
=
l
n
(
100
/
50
)
=
69
%
R_{d_1}=ln(100/50)=69\%
Rd1=ln(100/50)=69%
R
d
1
=
l
n
(
50
/
100
)
=
−
69
%
R_{d_1}=ln(50/100)=-69\%
Rd1=ln(50/100)=−69%
l
n
(
x
/
y
)
=
−
l
n
(
y
/
x
)
ln(x/y)=-ln(y/x)
ln(x/y)=−ln(y/x)
因此对数收益率是对称的。
本质上log return是复利期趋向无限时的期限收益率。
(2)解释
如果我们考察单一投资品在总共 T 期内的表现,那应该用对数收益率,而非算术收益率。算术平均值不能正确的反应一个投资品的收益率。
比如一个投资品今年涨了 50%,明年跌了 50%,它的算术平均收益率为 0;但事实上,两年后该投资品亏损了最初资金的 25%。
1元涨50%变为1*(1+50%)=1.5元,算术收益率=(1.5-1)/1=50%
1.5元跌50%变为1.5*(1-50%)=0.75元,算术收益率=(0.75-1.5)/0.75=-50%
算术平均收益率=(50%-50%)/2=0
但是,从1元变成0.75元,亏了(1-0.75)/1=25%
这两年的对数收益率分别为:
ln(1.5/1)= 40.5465% 和 ln(0.75/1.5)=-69.3147%,
-69.3147%+40.5465% = -28.7682%(加和的原因是我们是考察在总共T期内的表现),
转换为百分比亏损就是 exp{-28.7682%} - 1 = -25%。
对数收益率的最大好处是它的可加性,把单期的对数收益率相加就得到整体的对数收益率。并且对数收益率可以假设服从正态分布,这是simple return做不到的。
l
n
(
s
t
/
s
0
)
=
l
n
(
s
t
/
s
t
−
1
∗
s
t
−
1
/
s
t
−
1
∗
⋯
∗
s
1
/
s
0
)
⇒
l
n
(
s
t
/
s
0
)
=
l
n
(
s
t
/
s
t
−
1
)
+
l
n
(
s
t
−
1
/
s
t
−
1
)
+
⋯
+
l
n
(
s
1
/
s
0
)
ln(s_t/s_0)=ln(s_t/s_{t-1}*s_{t-1}/s_{t-1}*\cdots*s_1/s_0)\\ \Rightarrow ln(s_t/s_0)=ln(s_t/s_{t-1})+ln(s_{t-1}/s_{t-1})+\cdots+ln(s_1/s_0)
ln(st/s0)=ln(st/st−1∗st−1/st−1∗⋯∗s1/s0)⇒ln(st/s0)=ln(st/st−1)+ln(st−1/st−1)+⋯+ln(s1/s0)
百分比收益率和对数收益率
最新推荐文章于 2024-04-01 23:18:15 发布