金融量化-对数收益率

1.原因

核心就是对于单一投资品的收益率,对数收益率时序可加;对于不同投资品的截面收益率,应该用百分比收益率,因为它在截面上有可加性;另外对数收益率对建模有帮助。

2.解释

如果我们考察单一投资品在总共 T 期内的表现,那应该用对数收益率,而非算数收益率。算术平均值不能正确的反应一个投资品的收益率。比如一个投资品今年涨了 50%,明年跌了 50%,它的算数平均收益率为 0;但事实上,两年后该投资品亏损了最初资金的 25%。相反的,对数收益率由于具备可加性,它的均值可以正确反映出该投资品的真实收益率。比如这两年的对数收益率分别为 40.5% 和 -69.3%,平均值为 -28.77%,转换为百分比亏损就是 exp{-28.77%} - 1 = -25%。

对数收益率的时序可加性让我们能够使用另外两个利器:“中心极限定理”和“大数定律”。假设初始资金 X_0(假设等于 1),ln(X_T) = ln(X_T/X_0) 就是整个 T 期的对数收益率。对数收益率的最大好处是它的可加性,把单期的对数收益率相加就得到整体的对数收益率。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值