MSNET2论文阅读

M2SNet: Multi-scale in Multi-scale Subtraction Network for Medical Image Segmentation

摘要

  • U型结构参数冗余信息:削弱不同层次特征之间的互补性,导致病灶定位不准确,边缘模糊
  • 设计了一个基本减法单元(SU)来产生编码器中相邻层级之间的差异特征
  • 将单尺度单元SU扩展为层内多尺度单元,为解码器提供像素级和结构级的差分信息
  • 对不同层次的多尺度SU进行不同接收域的金字塔式配置,实现层间多尺度特征聚合
  • 建立了一个无需训练的网络“LossNet”:从底层到顶层对任务感知特征进行全面监督,从而驱动多尺度减法网络同时捕获细节和结构线索
  • 高效层内多尺度减法单元(MSU)设计
  • 代码链接

引言

  • 由于感受野的限制,单尺度卷积核很难捕获大小变化对象的上下文信息:其他基于其网络中的atrous空间金字塔池化模块ASPP或者DenseASPP提取层内多尺度信息
  • 损失函数的形式直接为网络的梯度优化提供了方向:像素级别(交叉熵),区域级别(iou,dice损失),全局(一致性损失)
  • 引入智能损失函数,无需复杂的人工设计,全面监控分割预测
    在这里插入图片描述

相关工作

医学领域

SFA 和PraNet:关注边缘 ,边界敏感损失函数
inf - net:建立了隐式反向注意和显式边缘注意来建模边界
BCS-Net:具有三个渐进边界上下文语义重建块,可以帮助解码器捕获肺部感染的片段区域

损失函数

  • weighted cross-entropy loss (WCE)
  • Focal loss
  • Dice loss
  • exponential logarithmic loss (EL Loss):通过加权和Dice损失和WCE损失来提高小结构对象的分割精度
  • comoloss:将Dice损失作为正则化项与WCE损失结合起来处理输入输出不平衡

本文方法

在这里插入图片描述
backbone : res2net-50
SU模块的计算: - 号是逐元素减法运算
在这里插入图片描述
MSU:相同的运算效率与之前的版本,如下所示
在这里插入图片描述
采样空洞卷积分别相减
在这里插入图片描述
CE模块:
在这里插入图片描述

损失函数

总体损失函数:
在这里插入图片描述
Lf损失函数:
在这里插入图片描述
在这里插入图片描述
欧式距离
在这里插入图片描述
低层特征图包含丰富的边界信息,高层特征图描述位置信息

消融实验

SU模块及损失函数
在这里插入图片描述
ASPP方法的消融
在这里插入图片描述
在这里插入图片描述

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小杨小杨1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值