M2SNet: Multi-scale in Multi-scale Subtraction Network for Medical Image Segmentation
摘要
- U型结构参数冗余信息:削弱不同层次特征之间的互补性,导致病灶定位不准确,边缘模糊
- 设计了一个基本减法单元(SU)来产生编码器中相邻层级之间的差异特征
- 将单尺度单元SU扩展为层内多尺度单元,为解码器提供像素级和结构级的差分信息
- 对不同层次的多尺度SU进行不同接收域的金字塔式配置,实现层间多尺度特征聚合
- 建立了一个无需训练的网络“LossNet”:从底层到顶层对任务感知特征进行全面监督,从而驱动多尺度减法网络同时捕获细节和结构线索
- 高效层内多尺度减法单元(MSU)设计
- 代码链接
引言
- 由于感受野的限制,单尺度卷积核很难捕获大小变化对象的上下文信息:其他基于其网络中的atrous空间金字塔池化模块ASPP或者DenseASPP提取层内多尺度信息
- 损失函数的形式直接为网络的梯度优化提供了方向:像素级别(交叉熵),区域级别(iou,dice损失),全局(一致性损失)
- 引入智能损失函数,无需复杂的人工设计,全面监控分割预测
相关工作
医学领域
SFA 和PraNet:关注边缘 ,边界敏感损失函数
inf - net:建立了隐式反向注意和显式边缘注意来建模边界
BCS-Net:具有三个渐进边界上下文语义重建块,可以帮助解码器捕获肺部感染的片段区域
损失函数
- weighted cross-entropy loss (WCE)
- Focal loss
- Dice loss
- exponential logarithmic loss (EL Loss):通过加权和Dice损失和WCE损失来提高小结构对象的分割精度
- comoloss:将Dice损失作为正则化项与WCE损失结合起来处理输入输出不平衡
本文方法
backbone : res2net-50
SU模块的计算: - 号是逐元素减法运算
MSU:相同的运算效率与之前的版本,如下所示
采样空洞卷积分别相减
CE模块:
损失函数
总体损失函数:
Lf损失函数:
欧式距离
低层特征图包含丰富的边界信息,高层特征图描述位置信息
消融实验
SU模块及损失函数
ASPP方法的消融