预训练的VIT为医学图像提供通用表示

Pretrained ViTs Yield Versatile Representations For Medical Images

摘要

方法

研究的主要问题是,原型VIT是否可以用作替代cnn的医疗诊断任务
考虑每种模型类型如何在不同的域、不同的初始化类型以及模型容量范围内执行各种任务
ViTs和cnn在相同条件下完成各种医学图像分析任务

结论

  • 如果采用适当的训练协议,vit可以可靠地取代医学2D图像分类上的cnn。更准确地说,vit在一系列医疗分类和分割任务中达到了与cnn相同的性能水平,但它们需要迁移学习才能做到这一点。
  • 但由于IMAGENET预训练是cnn的标准方法,因此在实践中不会产生任何额外的成本。
  • 医学成像任务的最佳整体性能是使用域内自监督预训练实现的,其中vit比cnn显示出较小的优势。
  • 随着数据规模的增长,这种优势预计也会增长。
  • 此外,vit具有许多吸引人的特性:它们的规模类似于cnn(或更好),它们缺乏归纳偏差,全局注意力和跳过连接可能会提高性能,并且它们的自注意机制提供了更清晰的显着性。
  • 从从业者的角度来看,这些好处足以令人信服地探索vit在医疗领域的使用。
  • 最后,现代cnn已经被广泛研究了十多年,而第一个vit出现在不到两年前——ViTs的改进潜力是相当大的
### 医学图像扩散模型的技术实现与应用 #### 概述 医学图像扩散模型是一种利用扩散过程来生成或处理医学图像的方法。这类模型通过逐步向噪声中引入结构化信息,最终恢复出高质量的目标图像。这种方法不仅能够用于图像生成,还可以扩展到其他任务如分割、去噪等。 #### SDSeg:基于Stable Diffusion的Latent扩散医学图像分割模型 SDSeg 是首个采用 Stable Diffusion 架构设计的latent扩散医学图像分割框架,在多个标准测试集中展现了卓越性能[^1]。该模型能够在不牺牲精度的情况下显著提高计算效率,适用于多种类型的医疗成像设备所采集的数据集。 #### 技术细节 为了构建一个有效的医学图像扩散模型,通常需要以下几个关键技术组件: - **预训练权重初始化**:使用大规模通用视觉数据集上的预训练参数作为起点可以加速收敛并改善泛化能力。 - **条件输入机制**:允许网络接收额外指导信号(例如标签图),从而更好地控制输出特性。 - **多尺度特征融合模块**:增强局部与全局上下文之间的交互作用,有助于捕捉更精细解剖结构。 ```python import torch from diffusers import UNet2DConditionModel, DDIMScheduler from transformers import CLIPTextModel # 加载预训练UNet模型和调度器 unet = UNet2DConditionModel.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="unet") scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012) def sample(prompt, num_inference_steps=50): text_encoder = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14") with torch.no_grad(): conditioning = text_encoder(prompt).last_hidden_state latents = torch.randn((1, unet.in_channels, height // 8, width // 8)) scheduler.set_timesteps(num_inference_steps) for t in reversed(scheduler.timesteps): model_input = torch.cat([latents] * 2) noise_pred = unet(model_input, t, encoder_hidden_states=conditioning)["sample"] latents = scheduler.step(noise_pred, t, latents).prev_sample return latents ``` 此代码片段展示了如何设置一个简单的采样循环以从给定提示生成新的医学图像实例。实际部署时可能还需要考虑更多因素,比如优化策略的选择以及针对特定应用场景调整超参数配置等问题。 #### 应用场景 这些先进的算法已经被广泛应用于各种临床实践中,包括但不限于肿瘤检测、病理切片分类、心脏功能评估等领域。随着研究不断深入和技术进步,未来有望看到更加精准高效的诊断工具和服务问世。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小杨小杨1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值