ALNS算法(自适应大领域搜索算法)

本文介绍了ALNS(AdaptiveLargeNeighborhoodSearch)算法的流程,包括生成初始解、迭代过程、算子选择、分数更新和权重更新。算子选择采用了轮盘赌算法,根据算子的表现更新其权重。摧毁算子包括随机摧毁、最大N点摧毁和连续递增N节点移除,修复算子则有随机修复和最小N点插入。文章还提供了C++实现的参考框架,包括Data、Operator和Control类的设计。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、ALNS算法与流程

	自适应大领域搜索算法本质上是一种搜索算法,它的精髓在于用摧毁算子和修复算子对队列进行
摧毁和修复,从而进行启发式的搜索,
	自适应表现在算子的竞争性选择上面。
	算法的大体流程分为这么几步:
	1)生成初始解:初始解的生成可以随机生成,也可以将当前节点的编号按照顺序存储作为初始
解,初始解会影响算法收敛的速度。
	2)重复以下步骤进行迭代直到停止准则
		a.根据算子权重选择破坏与修复算子,并更新算子使用次数
		b.破坏算子和修复算子依次对当前解操作得到新解
		c.更新当前解
		d.更新最优解
		e.更新算子分数
		f.更新算子权重
	3)返回最优解

二、算子选择

	轮盘赌算法是一种归一化的随机选择算法,具体是分配给每个算子一个权重,轮盘赌先求出总的
权重和,之后将每个算子的权重进行归一化处理,之后产生一个随机值,这个随机值落在哪个算子的
权重区间内就选择哪个算子。在具体实现时,也可以不对权重进行归一化,而直接用权重作为区间进
行选择。

三、算子分数更新

	算子分数分为多种情况:
	1)产生的解比最优解优秀,那么加1.52)如果比当前解优秀,那么说明该算子能产生较优解,所以加1.23)如果不比当前解优秀,但是在1%概率内接受了,那么加0.84)如果不比当前解优秀拒接了,那么加0.6分。
	算子分数的更新多少是自己设定的,接受概率也是自己设定的,这几项参数并不绝对。

四、算子权重更新

在这里插入图片描述

	新产生的权重等于上面公式的计算结果。
	其中,ρ是权重更新快慢的参数,w为当前的权重,m为算子的分数,t为算子的使用次数,可以看
出,初始权重较大、且单位使用次数得分较高的算子被选中的概率较高。

五、摧毁算子

	摧毁算子是用来对队列进行摧毁的一类函数,在这里提供三种摧毁思路:
	1、随机摧毁:随机摧毁是ALNS算法不可少的一个摧毁算子,这个算子可以摧毁任意位置的节点。
具体实现为,随机产生N个不重复的节点摧毁位置,对队列进行摧毁。
	2、最大N点摧毁:当前解队列是一个有向的路径,那么对于路径中的任意一个点,都会有唯一的
一个前驱和唯一的一个后继(除首尾节点),所以对每个节点的来和去两条路径的消耗进行统计作为
当前点的消耗,选择最大的N个点移除。
	3、连续递增N节点移除:这个算子会维护一个变量K,每一次都从这个变量开始,选择N个连续的
节点进行摧毁,如果K后面不够N个点,则返回第一个点开始进行补足,每次摧毁后K=(K+1)%num,num
为节点的个数。

六、修复算子

	修复算子是用来对摧毁后的队列进行修复的一类函数,在这里提供两种思路
	1、随机修复:这个算子是必不可少的修复函数,表现为,任意选择N个不重复的插入的节点,将
摧毁算子摧毁后的节点插入到对应的位置。
	2、最小N点插入:对于每一个摧毁节点,对摧毁队列的每一个位置进行试插入,统计每个位置的
消耗,选择插入使得总增加的消耗最小的位置进行插入。下一个节点要在前一个节点已经插入的基础
上进行消耗的判别。

七、C++代码实现参考框架

在这里插入图片描述

	其中,Data类包含存储和操作数据的所有数据和操作,Operator包含算子和算子分数更新等一
系列的算子相关的资源,control层用于实现ALNS算法的流程,view可以根据需要,选择前后端分离
的实现方式,比如用vc6.0写后端数据处理,用qt写前端显示页面等。
	
	Data类设计:
	
	属性设计:
	1)最优解队列:用于保存最优解队列的节点编号
	2)当前解队列:用于保存当前解队列的节点编号
	3)摧毁队列:用于保存去除了摧毁节点的剩下的队列
	4)摧毁节点队列:用于保存被去除的节点的队列
	5)消耗矩阵:用来保存任意两点的消耗(可优化)
	操作设计:
	1)路径消耗函数:用于统计任意一个队列的路径的消耗
	2)更新当前解函数:用来根据算子分数更新的几种情况来更新当前解,并返回更新种类
	3)更新最优解函数:用来评估当前解和最优解消耗,更新最优解
	4)摧毁函数:传入下标队列,对当前解队列进行摧毁
	5)修复函数:传入下标队列,用于将摧毁节点队列中的节点加入摧毁队列
	
	Operator类设计:
	
	算子类采用继承的方式,算子的使用次数更新、分数更新、权重更新、以及轮盘赌选择算子这几
个函数都写在Operator类(基类)里面,摧毁算子(OperatorDes)和修复算子(OperatorFix)各
一个类,继承于这个基类,下面详细介绍修复算子的设计,摧毁算子和修复算子设计相同。
	
	OperatorFix:
	
	属性设计:
	1)权重更新系数
	2)算子分数队列
	3)算子权重队列
	4)算子使用次数队列
	操作设计:
	1)两个修复算子函数:产生N个节点的修复下标队列,真正的摧毁在Data类中进行。
	接口设计:
	1)Fix(n,data):这是一个函数,供外部调用,在里面根据传入的算子编号n,选择对应的
修复算子,对data进行操作,这样外部只需要通过OperatorFix继承于Operator的轮盘赌选择算子
选择出对应的算子,传入即可进行对应的修复,而不需要知道具体的修复的细节。
	
	Control类设计:
	属性设计:
	1)Data数据类的实例
	2)OperatorFix类的实例
	3)OperatorDes类的实例
	操作设计:
	1)运行函数:按照文章最一开始提到的流程,调用对应的函数,需要注意的是参数的传递。

	界面显示设计:前面提到了前后端分离,这里提供三种前后端分离的实现方式:
	1)文件传输数据
	2)socket网络编程传输套接字
	3)c++利用管道、信号量等技术实现通信
### 自适应大领域搜索算法的相关资源 对于自适应大领域搜索算法(Adaptive Large Neighborhood Search, ALNS),该类算法属于启发式优化方法的一种,在解决复杂的组合优化问题方面表现出色。然而,针对特定的ALNS实现,尤其是带有自适应特性的版本,并未直接提及于所提供的参考资料中[^1]。 尽管如此,GitHub上存在多个开源项目致力于研究和发展基于ALNS及其变体的应用程序。这些项目通常会提供详细的文档说明以及源码供开发者学习交流: #### 推荐的GitHub仓库 - **VRPy**: 这是一个用于求解车辆路径规划问题(Vehicle Routing Problem) 的Python库,其中实现了多种局部搜索算子,包括LNS机制。虽然不是严格意义上的ALNS,但是可以作为理解如何应用此类技术的良好起点。 ```bash git clone https://github.com/Kuifje02/vrpy.git ``` - **ortools/contrib/large_neighborhood_search**: Google OR Tools贡献模块下的一个分支,专注于探索大规模邻域内的解决方案改进。此部分代码展示了利用OR-Tools框架构建高效能的LNS模型的方法论。 ```bash git clone --recurse-submodules https://github.com/google/or-tools.git cd or-tools git checkout contrib-large_neighborhood_search ``` - **alns-python**: 由学术界维护的一个纯Python编写的ALNS工具包,旨在简化研究人员和从业者对该算法的理解与实践操作过程中的障碍。该项目不仅提供了标准版ALNS的核心组件定义,还包含了几个实际案例的研究成果分享。 ```bash git clone https://github.com/rickwierenga/alns-python.git ``` 上述提到的每一个存储库都拥有活跃的社区支持体系,能够帮助使用者更好地掌握ALNS的工作原理并应用于具体场景之中。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值