线性代数笔记六——转置—置换—向量空间R

本文介绍了矩阵的分解(如LU分解),置换矩阵的作用以及它们在行互换和消元过程中的应用。同时,讨论了转置的概念,对称矩阵的特点,以及向量空间的定义,包括如何通过矩阵的列向量构建子空间和线性组合的重要性。
摘要由CSDN通过智能技术生成

大纲

转换

线性代数的大门“向量空间”


置换

置换矩阵: 记作P,用来完成行列互换的矩阵。作用, 置换行得到主元(检查主元位置是否为零)

A = L U = [ 1 0 0 a 1 0 b c 1 ] ⏟ L [ 1 a b 0 1 c 0 0 1 ] ⏟ U A=LU= \underbrace{\begin{bmatrix}1&0&0\\a&1&0\\b&c&1\end{bmatrix}}_{L} \underbrace{\begin{bmatrix}1&a&b\\0&1&c\\0&0&1\end{bmatrix}}_{U} A=LU=L 1ab01c001 U 100a10bc1

P A = L U PA=LU PA=LU(包含行互换的消元)对于任意可逆矩阵 A A A都有这种形式;大多数可逆 A A A都不需要 P P P ,但也有很多矩阵需要行互换

__置换矩阵__是行重新排列了的单位矩阵, P P P总的个数为 n ! n! n! (即 n ( n − 1 ) ( n − 2 ) ( n − 3 ) … ( 3 ) ( 2 ) ( 1 ) n(n-1)(n-2)(n-3)\dots(3)(2)(1) n(n1)(n2)(n3)(3)(2)(1),各行重新排列后所有可能的数目,所有__转换矩阵__都是__可逆__的,而且__逆矩阵__与其__转置__相等

P − 1 = P T ; P T P = I P^{-1} = P^T;P^TP=I P1=PT;PTP=I

转置

转置:记作 T T T

[ 1 3 2 3 4 1 ] T = [ 1 2 4 3 3 1 ] , ( A T ) i j = A j i {\begin{bmatrix}1&3\\2&3\\4&1\end{bmatrix}}^T=\begin{bmatrix}1&2&4\\3&3&1\end{bmatrix}, (A^T)_{ij} = A_{ji} 124331 T=[132341],(AT)ij=Aji

对称矩阵
A T = A [ 3 1 7 1 2 9 7 9 4 ] A^T=A \\ \begin{bmatrix}3&1&7\\1&2&9\\7&9&4\end{bmatrix} AT=A 317129794

所有 R T R ​ R^TR​ RTR都是对称的

[ 1 3 2 3 4 1 ] [ 1 2 4 3 3 1 ] = [ 10 11 7 11 13 11 7 11 17 ] \begin{bmatrix}1&3\\2&3\\4&1\end{bmatrix} \begin{bmatrix}1&2&4\\3&3&1\end{bmatrix} = \begin{bmatrix}10&11&7\\11&13&11\\7&11&17\end{bmatrix} 124331 [132341]= 1011711131171117

验证对称性: ( R T R ) T = R T R T T = R T R (R^TR)^T = R^TR^{TT}=R^TR (RTR)T=RTRTT=RTR

向量空间

向量空间:

  • 空间__表示有很多__向量,一整个空间的向量。但并不是任意__向量的组合__都能称__空间__,

  • __空间__必须满足一定的规则,能够进行加法和数乘运算,必须能够进行线性组合

例:

R 2 为 x y 平面 R^2为xy平面 R2xy平面

R 3 为所有三维向量组成的向量空间 R^3为所有三维向量组成的向量空间 R3为所有三维向量组成的向量空间

R n R^n Rn

不能对数乘封闭都不是向量空间

R 2 R^2 R2 中的子向量空间:

  1. 所有 R 2 R^2 R2
  2. 通过原点的所有直线 L L L
  3. 0向量

R 3 R^3 R3 中的子向量空间:

  1. R 3 R^3 R3 本身(极端)
  2. 0向量(极端)
  3. 穿过原点的平面
  4. 穿过原点的直线

__子空间__是如何得到的?__矩阵__是如何__构造子空间__的?

方法一:通过列向量构造,各列在 R 3 R^3 R3中,所有的线性组合构成一个子空间。(用这些列来构造 R 3 R^3 R3的__子空间__,各列的和在 R 3 R^3 R3空间中,各列乘以任何数也在 R 3 R^3 R3子空间内)

A = [ 1 3 2 3 4 1 ] A=\begin{bmatrix}1&3\\2&3\\4&1\end{bmatrix} A= 124331

何为线性组合?指列一乘以某数,列二乘以某数,然后相加。它包括__两种运算数乘__和__加法,只要包含了所有的__线性组合,就必然得到__向量子空间__。叫做__列空间__记作 C ( A ) C(A) C(A), C C C代表__列空间__。

本节核心思想:通过某些向量,构成一个向量组成的空间,如果这些向量属于 R 3 R^3 R3,它们构成的空间也在 R 3 R^3 R3内,关键是,对其进行线性组合后仍然在子空间内

  • 19
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值