Multi Diffusion: Fusing Diffusion Paths for Controlled Image Generation——【论文笔记】

本文发表于ICML 2023

论文官网:MultiDiffusion: Fusing Diffusion Paths for Controlled Image Generation

 

一、Intorduction

        文本到图像生成模型已经具有合成高质量和多样化图像的能力,但是由于难以为用户提供对生成内容的直观控制,因此将文本到图像模型部署到现实世界的应用程序仍然具有挑战性。目前实现对扩散模型实现可控的图像生成主要有两种方式:1.从头开始训练模型或针对手头的任务微调给定的扩散模型;2.重用预先训练好的模型,并添加一些控制生成功能。

        本文提出了一种新的方法:MultiDiffusion,这是一个新的统一框架,可以显着提高将预训练扩散模型适应受控图像生成的灵活性。MultiDiffusion背后的基本思想是定义一个新的生成过程,该过程由几个参考扩散生成过程组成,这些参考扩散生成过程通过一组共享参数或约束绑定在一起。更详细地,将参考扩散模型应用于所生成的图像中的不同区域,预测每个区域的去噪采样步骤。反过来,MultiDiffusion采用全局去噪采样步骤,通过最小二乘最优解协调所有这些不同的步骤。

通过MultiDiffusion,我们能够将参考预训练的文本到图像应用于不同的应用,包括以

### 关于Scene Diffusion连续场景生成用于LiDAR模拟的研究 目前,关于 **Scene Diffusion Continuous Scenario Generation for LiDAR Simulation** 的具体研究尚未广泛公开提及。然而,可以推测该主题可能涉及扩散模型(Diffusion Models)在激光雷达(LiDAR)数据生成中的应用。这种技术的核心在于通过生成对抗网络(GAN)、变分自编码器(VAE)或者更先进的扩散模型来合成逼真的三维点云数据。 #### 扩散模型简介 扩散模型是一种基于马尔可夫链的概率生成模型,其核心思想是通过对噪声逐步去噪的过程重建目标分布的数据[^4]。这类模型已经在图像生成领域取得了显著成果,并逐渐扩展到其他模态的数据生成任务中,例如音频、视频甚至三维点云。 #### 应用背景 激光雷达传感器作为自动驾驶汽车的重要组成部分之一,能够提供高精度的环境几何信息。然而,实际采集的真实世界LiDAR数据往往受到天气条件、光照变化等因素的影响,从而增加了算法开发和验证的成本。因此,利用仿真工具生成多样化的LiDAR扫描数据成为一种有效的替代方案。 #### 技术实现思路 以下是构建此类系统的潜在技术路径: 1. 数据预处理阶段:收集大量真实世界的LiDAR测量值并将其转换成统一格式供后续训练使用; 2. 模型架构设计方面可以选择引入U-Net风格的encoder-decoder结构配合注意力机制增强局部细节表现力;同时结合时间步嵌入向量调节不同演化阶段特性表达能力。 3. 训练过程中采用均方误差损失函数衡量预测结果与原始输入之间的差异程度,并辅以额外正则项约束促进泛化性能提升。 ```python import torch.nn as nn class UNetBlock(nn.Module): def __init__(self, in_channels, out_channels): super().__init__() self.conv = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=3, padding='same'), nn.ReLU(), nn.BatchNorm2d(out_channels), nn.Conv2d(out_channels, out_channels, kernel_size=3, padding='same'), nn.ReLU(), nn.BatchNorm2d(out_channels) ) def forward(self, x): return self.conv(x) def unet_model(): model = nn.Sequential( UNetBlock(64, 128), # Example layer definition ... ) return model ``` 尽管上述描述提供了理论框架指导,但针对特定应用场景优化调整参数设置仍需深入探索实践检验效果如何达到最佳平衡状态。 ### 下载资源建议 如果正在寻找与此相关的学术文章全文链接下载方式,推荐访问以下几个知名开源平台尝试检索获取: - arXiv.org: https://arxiv.org/ - ResearchGate.net: https://www.researchgate.net/ - Google Scholar: https://scholar.google.com/ 另外值得注意的是部分高质量期刊会议论文可能会有订阅权限限制情况存在,在这种情形下考虑联系作者请求副本或许不失为一条可行途径。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我是浮夸

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值