IP-Adapter: Text Compatible Image Prompt Adapter forText-to-Image Diffusion Models——【论文笔记】

本文介绍了一种轻量级的IP-Adapter,通过解耦的交叉注意机制增强文本到图像扩散模型对图像提示的处理能力。IP-Adapter仅需少量参数,性能超越全量微调,适用于多种模型微调和多模态生成,节省计算资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是腾讯实验室挂在ArXiv上的文章

论文地址:[2308.06721] IP-Adapter: Text Compatible Image Prompt Adapter for Text-to-Image Diffusion Models (arxiv.org)

GitHub地址:

tencent-ailab/IP-Adapter: The image prompt adapter is designed to enable a pretrained text-to-image diffusion model to generate images with image prompt. (github.com) 

一、Introduction

        近年来,大型文本到图像扩散模型展现了强大的生成能力,创造出高保真图像,但生成所需的文本提示往往复杂且工程量大。为了解决这一问题,文本提示的替代方法之一是使用图像提示,因为图像胜过千言万语。现有的直接微调预训练模型的方法虽然有效,但需要大量计算资源,且不兼容其他基础模型、文本提示和结构控制。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我是浮夸

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值