IP-Adapter Text Compatible Image Prompt Adapter for Text-to-Image Diffusion Models

文章介绍了一种名为IP-Adapter的方法,通过在文生图模型中添加解耦的图像prompt处理,提高模型的可控性。该方法将文本和图像特征的交叉注意力分开,通过训练图文对数据集实现图像信息的融入。效果展示显示了结合图像prompt后的结构和细节控制能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

IP-Adapter: Text Compatible Image Prompt Adapter for Text-to-Image Diffusion Models

TL; DR:提出通过解耦交叉注意力模块来图片作为生图条件,加入到单纯的文生图模型中。所谓解耦,其实就是除了文本 prompt 交叉注意力之外,加了一个图像 prompt 交叉注意力,两个支路是分开的,而非之前的拼接或者相加。


导语

现在的生图模型大都以文本作为条件。俗话说:”一图胜千言“,一张图像中包含着极其丰富的信息,如果能将图像信息作为条件,生图模型的可控性有将得到巨大的提升。本文提出 IP-Adapter,为预训练的文生图扩散模型提供 image prompt 的能力。IP-Adapter 设计的核心是解耦的交叉注意力机制,将文本特征和图像特征的交叉注意力层分开来,

方法

IP-Adapter 的结构非常清晰,就是加了一支和文本 prompt 条件结构完全相同的图像 prompt 处理之路,同样是 encoder + linear + cross attention 到 UNet 中。其中只有 linear 和 cross attention 是可训练的。

仅有文本 prompt 的交叉注意力:
Z = softmax ( Q ⋅ K text V text ) Z=\text{softmax}(\frac{Q\cdot K_\text{text}}{V_\text{text}}) Z=softmax(VtextQKtext)
加入 IP-Adapter 图像 prompt 之后:
Z new = softmax ( Q ⋅ K text d ) V text + λ ⋅ softmax ( Q ⋅ K image d ) V image Z_\text{new}=\text{softmax}(\frac{Q\cdot K_\text{text}}{\sqrt{d}})V_\text{text}+\lambda\cdot\text{softmax}(\frac{Q\cdot K_\text{image}}{\sqrt{d}})V_\text{image} Znew=softmax(d QKtext)Vtext+λsoftmax(d QKimage)Vimage
其中 Q Q Q 是 query,来自 UNet,两者是共享的,而 K K K V V V 则是各自不同的。

训练时,也是使用图文对数据集进行训练,与常规 SD 的训练目标相同。

在这里插入图片描述

效果展示

有了图像 prompt 之后能怎样呢?下图展示了一些用法。可以看到,既可以与惊喜的空间结构相结合,生成特定风格和动作的结构,也可以和文本 prompt 结构,更精确地控制一些很难用语言描述的细节。

在这里插入图片描述

总结

IP-Adapter 通过解耦的、独立的一支交叉注意力层将图像 prompt 引入到文生图模型中,是比较基础的、简单有效的方法。不过说是解耦,但是最后看着还是加起来的呢,只是多过了一个 cross attention 层。当然,只要要结合到 UNet 中去,终归是要么拼接,要么相加的。

### Stable Diffusion LoRA Model Resources and Recommendations For users interested in exploring or utilizing LoRA models with Stable Diffusion, several key resources are available that can significantly enhance the capabilities of text-to-image generation tasks. LaVi-Bridge integrates multiple pretrained language models alongside generative visual models specifically designed for this purpose; notably supporting combinations such as T5-Large + U-Net (SD) and Llama-2 + U-Net (SD)[^1]. This indicates a strong compatibility between these frameworks and Stable Diffusion. #### Key Resource Platforms Several platforms offer curated collections of LoRA models compatible with Stable Diffusion: - **Hugging Face Hub**: A comprehensive repository where developers share pre-trained models including those optimized for use within Stable Diffusion pipelines. - **Civitai**: Specializes in AI art tools offering both free and premium access to various types of diffusion-based models like LoRAs which integrate seamlessly into existing workflows involving Stable Diffusion. #### Recommended Practices When Using LoRA Models With Stable Diffusion To maximize performance while minimizing computational overhead when working with LoRA models on top of Stable Diffusion: - Utilize lightweight adapters instead of retraining entire networks from scratch whenever possible since they allow fine-tuning without altering original weights thus preserving generalization properties across diverse datasets. - Experimentation with different adapter configurations may yield better results depending upon specific application requirements ensuring optimal trade-offs between speed versus quality metrics during inference phases. ```python from diffusers import StableDiffusionPipeline, EulerAncestralDiscreteScheduler import torch model_id = "stabilityai/stable-diffusion-2-base" scheduler = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler") pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler).to("cuda") prompt = "A fantasy landscape" image = pipe(prompt).images[0] image.save("./fantasy_landscape.png") ``` --related questions-- 1. What are some best practices for training custom LoRA models? 2. How do adapter mechanisms improve efficiency compared to full network modifications? 3. Can you provide examples of successful applications using LaVi-Bridge's supported model pairs? 4. Are there any limitations associated with integrating third-party LoRA models into Stable Diffusion projects?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值