GAT关键代码

博客详细介绍了GAT(Graph Attention Network)模型的实现,重点关注了attention层的实现,特别是如何通过_prepare_attentional_mechanism_input函数实现任意节点间的拼接。此外,还讨论了在GAT中如何将多头注意力的结果拼接处理。
摘要由CSDN通过智能技术生成
attention层的实现

重点是理解_prepare_attentional_mechanism_input函数的作用:就是实现了任意两个节点之间进行拼接。也就是对应原文中的这一部分公式:
在这里插入图片描述

class GraphAttentionLayer(nn.Module):
    """
    Simple GAT layer, similar to https://arxiv.org/abs/1710.10903
    """
    def __init__(self, in_features, out_features, dropout, alpha, concat=True):
        super(GraphAttentionLayer, self).__init__()
        self.dropout = dropout
        self.in_features = in_features
        self.out_features = out_features
        # 学习因子
        self.alpha = alpha
        self.concat = concat
        
        # 建立都是0的矩阵,大小为(输入维度,输出维度)
        self.W = nn.Parameter(torch.empty(size=(in_features, out_features)))
        # xavier初始化
        nn.init.xavier_uniform_(self.W.data, gain=1.414)
        # 这里的self.a,对应的是论文里的向量a,故其维度大小应该为(2*out_features, 1)
        self.a = nn.Parameter(torch.empty(size=(2*out_features, 1)))
        nn.init.xavier_uniform_(self.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值