Translating Embeddings for Modeling Multi-relational Data(2013/NIPS)
Abstract
•问题:把多关系数据的实体和关系嵌入到低维向量空间中
•多元关系数据:有向图中包括头实体h、尾实体t以及两者之间的关系r,表示为三元组(h,r,t)
•提出TransE:对向量空间中的三元组(h,r,t)进行操作,关系r视为翻译来进行建模的知识表示方法
简单来说,TransE就是讲知识图谱中的实体和关系看成两个Matrix。实体矩阵结构为 (ne* d),其中ne表示实体数量,d表示每个实体向量的维度,矩阵中的每一行代表了一个实体的词向量;而关系矩阵结构为(nr*d),其中nr代表关系数量,d表示每个关系向量的维度。TransE训练后模型的理想状态是,从实体矩阵和关系矩阵中各自抽取一个向量,进行L1或者L2运算,得到的结果近似于实体矩阵中的另一个实体的向量,从而达到通过词向量表示知识图谱中已存在的三元组的关系。
Translation-based model
在知识图谱的实体向量集中,随机取得头实体向量或尾实体向量并对初始三元组的对应向量进行替换,得到若干三元组d(h'+l,t'),构成训练集进行训练。