机器学习之利用SMO算法求解支持向量机—基于python

      大家好,我是带我去滑雪!  

      本期将讨论支持向量机的实现问题,我们知道支持向量机的学习问题可以化为求解凸二次规划问题。这样的凸二次规划问题具有全局最优解,并且有许多最优化算法可以用于这一问题的求解。但是当训练样本容量很大时,这些算法往往变得非常低效,以致无法使用。所以,如何高效地实现支持向量机学习就成为一个重要的问题。目前人们已提出许多快速实现算法。本期讲述其中的序列最小最优化(sequential minimal optimization, SMO)算法。

目录

1、SMO理论推导

 2、python代码与实例

(1)使用线性可分样本,采用SMO算法求解支持向量机分类

(2)使用非线性数据(曲线),采用SMO算法求解支持向量机分类

(3)使用非线性数据(交叉),采用SMO算法求解支持向量机分类

4、参考文献


1、SMO理论推导

       SMO算法要求解如下凸二次规划对偶问题:

1556382d24bc44c3a5f43368d510bd9a.png

       选择两个变量gif.latex?%5Calpha%20_%7B1%7Dgif.latex?%5Calpha%20_%7B2%7D,其他变量固定,于是SMO算法的最优化子问题就变成如下:

edfb3c0b4de44678be22ff7c7e4f3afa.png

       下面,首先求沿着约束方向未经剪辑即未考虑不等式约束时gif.latex?%5Calpha%20_%7B2%7D的最优解gif.latex?%5Calpha%20_%7B1%7D%5E%7Bnew.unc%7D;然后再求剪辑后的解gif.latex?%5Calpha%20_%7B2%7D%5E%7Bnew%7D。我们用定理来叙述这个结果,为了叙述简单,引入记号记作:

46d1b8433cd1487688f33862a56503d0.png

c1d3786f5c244adaa42c4b729fdd4608.png

00a9192596f449e09c3bda268c0daf31.png

      那么目标函数可写成如下形式:

581de6d8c2dc47baa3cf0d5a72aa34fb.png

65614a602bcb48c2a636fa05515776bb.png

63d54428ac044b50bd09891c1d646a00.png

       对gif.latex?%5Calpha%20_%7B2%7D求导可得:

73f025a123d3492a9682bfc4758a71f2.png

      令其为0,得到:

b21cd70746854f22b97f10355436cc2c.png

4baa98bbc50e4949ae28750f768505dd.png

     因此,gif.latex?%5Calpha%20_%7B2%7D最终的解就是:

7969a1d1d7f347f19f9d621aeaa67fa2.png

fe596fc3315646bca192aa4ecd0232ba.png

2341135db8c7450382bb66146b08c29d.png

 2、python代码与实例

(1)使用线性可分样本,采用SMO算法求解支持向量机分类

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs,make_circles,make_moons
from sklearn.preprocessing import StandardScaler
 
    
    
class SMOStruct:
    """构造SMO的数据结构"""
    def __init__(self, X, y, C, kernel, alphas, b, errors, user_linear_optim):
        self.X = X              # 训练样本
        self.y = y              # 类别
        self.C = C              # 正则化常量,用于调整(过)拟合的程度
        self.kernel = kernel    # 核函数,实现了两个核函数,线性和高斯(RBF)
        self.alphas = alphas    # 拉格朗日乘子,与样本一一相对
        self.b = b              # 截距b
        self.errors = errors    # 差值矩阵,用于存储alpha值实际与预测值得差值,其数量与样本一一相对
        
        self.m, self.n = np.shape(self.X)    #m为训练样本的个数和n为样本的维度
                                             
 
        self.user_linear_optim = user_linear_optim    # 选择模型核函数,选择是,则使用线性核函数,否则使用RBF核函数(高斯核函数)
        self.w = np.zeros(self.n)     # 初始化权重w的值,主要用于线性核函数
        #self.b = 0               
 
 
   
 
def linear_kernel(x,y,b=1):
    #线性核函数
    """ returns the linear combination of arrays 'x' and 'y' with
    the optional bias term 'b' (set to 1 by default). """
    result = x @ y.T + b
    return result # 注意矩阵乘法的@运算符
 
    
    
def gaussian_kernel(x,y, sigma=1):
    #高斯核函数
    """设置默认sigma=1 """
 
    if np.ndim(x) == 1 and np.ndim(y) == 1:
        result = np.exp(-(np.linalg.norm(x-y,2))**2/(2*sigma**2))
    elif(np.ndim(x)>1 and np.ndim(y) == 1) or (np.ndim(x) == 1 and np.ndim(y)>1):
        result = np.exp(-(np.linalg.norm(x-y, 2, axis=1)**2)/(2*sigma**2))
    elif np.ndim(x) > 1 and np.ndim(y) > 1 :
        result = np.exp(-(np.linalg.norm(x[:, np.newaxis]- y[np.newaxis, :], 2, axis = 2) ** 2)/(2*sigma**2))
    return result
 
 
 #判别函数1,用于单一样本
def decision_function_output(model,i):
    if model.user_linear_optim:
        #Equation (J1)
        #return float(np.dot(model.w.T, model.X[i])) - model.b
        return float(model.w.T @ model.X[i]) - model.b
    else:
        #Equation (J10)
        return np.sum([model.alphas[j] * model.y[j] * model.kernel(model.X[j], model.X[i]) for j in range(model.m)]) - model.b
 
 
    
# 判别函数2,用于多个样本
def decision_function(alphas, target, kernel, X_train, x_test, b):
    """ Applies the SVM decision function to the input feature vectors in 'x_test'.
    """
    result = (alphas * target) @ kernel(X_train, x_test) - b   # *,@ 两个Operators的区别?
    
    return result
 
    
    
    
    
def plot_decision_boundary(model, ax, resolution = 100, colors=('b','k','r'), levels = (-1, 0, 1)):
    """
    画出分割平面及支持平面,
    用的是等高线的方法
 
    """
 
    #生成横坐标与纵坐标的网格[100x100]
    #随后评估整个空间的模型
    xrange = np.linspace(model.X[:,0].min(), model.X[:, 0].max(), resolution)#取样本当中横坐标x的最小值与最大值,均等分100份
    yrange = np.linspace(model.X[:,1].min(), model.X[:, 1].max(), resolution)#取纵坐标的最小值与最大值,均等分100份
    grid = [[decision_function(model.alphas,model.y, model.kernel, model.X,
                               np.array([xr,yr]), model.b) for xr in xrange] for yr in yrange]
   
    grid = np.array(grid).reshape(len(xrange), len(yrange))
 
 
 
   
    ax.contour(xrange, yrange, grid, levels=levels, linewidths = (1,1,1),
               linestyles = ('--', '-', '--'), colors=colors)   #绘制等高线,展示间隔
    ax.scatter(model.X[:,0], model.X[:, 1],
               c=model.y, cmap = plt.cm.viridis, lw=0, alpha =0.25) #绘制所有样本点的散点图
 
    #as circled points (linewidth >0)
    mask = np.round(model.alphas, decimals = 2) !=0.0
    ax.scatter(model.X[mask,0], model.X[mask,1],
               c=model.y[mask], cmap=plt.cm.viridis, lw=1, edgecolors='k')#画出支持向量(alpha不等于0的点)
 
    return grid, ax
 
    
    
    
    
# 选择了alpha2、 alpha1后,开始第一步优化,然后迭代, “第二层循环,内循环”
# 主要的优化步骤在这里发生
def take_step(i1, i2, model):
   
    #skip if chosen alphas are the same
    if i1 == i2:
        return 0, model
    # a1, a2 的原值,old value,优化在于产生优化后的值,新值 new value

    alph1 = model.alphas[i1]
    alph2 = model.alphas[i2]
   
    y1 = model.y[i1]
    y2 = model.y[i2]
 
    E1 = get_error(model, i1)
    E2 = get_error(model, i2)
    s = y1 * y2
 
    # 计算alpha的边界,L, H
    # compute L & H, the bounds on new possible alpha values
    if(y1 != y2):   
        #y1,y2 异号,使用 Equation (J13)
        L = max(0, alph2 - alph1)
        H = min(model.C, model.C + alph2 - alph1)
    elif (y1 == y2):
        #y1,y2 同号,使用 Equation (J14)
        L = max(0, alph1+alph2 - model.C)
        H = min(model.C, alph1 + alph2)
    if (L==H):
        return 0, model
 
    #分别计算样本1, 2对应的核函数组合,目的在于计算eta
    #也就是求一阶导数后的值,目的在于计算a2new
    k11 = model.kernel(model.X[i1], model.X[i1])
    k12 = model.kernel(model.X[i1], model.X[i2])
    k22 = model.kernel(model.X[i2], model.X[i2])
    #计算 eta,equation (J15)
    eta = k11 + k22 - 2*k12
    
    #如论文中所述,分两种情况根据eta为正positive 还是为负或0来计算计算a2 new
    
    if(eta>0): 
        #equation (J16) 计算alpha2
        a2 = alph2 + y2 * (E1 - E2)/eta
        #clip a2 based on bounds L & H
        #把a2夹到限定区间 equation (J17)
        if L < a2 < H:
            a2 = a2
        elif (a2 <= L):
            a2 = L
        elif (a2 >= H):
            a2 = H
    #如果eta不为正(为负或0)
    #if eta is non-positive, move new a2 to bound with greater objective function value
    else:
        # Equation (J19)
        # 在特殊情况下,eta可能不为正not be positive
        f1 = y1*(E1 + model.b) - alph1*k11 - s*alph2*k12
        f2 = y2 * (E2 + model.b) - s* alph1 * k12 - alph2 * k22
 
        L1 = alph1 + s*(alph2 - L)
        H1 = alph1 + s*(alph2 - H)
 
        Lobj = L1 * f1 + L * f2 + 0.5 * (L1 ** 2) * k11 \
               + 0.5 * (L**2) * k22 + s * L * L1 * k12
               
        Hobj = H1 * f1 + H * f2 + 0.5 * (H1**2) * k11 \
               + 0.5 * (H**2) * k22 + s * H * H1 * k12
               
        if Lobj < Hobj - eps:
            a2 = L
        elif Lobj > Hobj + eps:
            a2 = H
        else:
            a2 = alph2
 
    #当new a2 千万分之一接近C或0是,就让它等于C或0
    if a2 <1e-8:
        a2 = 0.0
    elif a2 > (model.C - 1e-8):
        a2 = model.C
    #超过容差仍不能优化时,跳过
    #If examples can't be optimized within epsilon(eps), skip this pair
    if (np.abs(a2 - alph2) < eps * (a2 + alph2 + eps)):
        return 0, model
    a1 = alph1 + s * (alph2 - a2)    #根据新 a2计算 新 a1 Equation(J18)
    b1 = E1 + y1*(a1 - alph1) * k11 + y2 * (a2 - alph2) * k12 + model.b   #更新截距b的值 Equation (J20)
    b2 = E2 + y1*(a1 - alph1) * k12 + y2 * (a2 - alph2) * k22 + model.b  #equation (J21)
    # Set new threshoold based on if a1 or a2 is bound by L and/or H
    if 0 < a1 and a1 < C:
        b_new =b1
    elif 0 < a2 and a2 < C:
        b_new = b2
    #Average thresholds if both are bound
    else:
        b_new = (b1 + b2) * 0.5
    #update model threshold
    model.b = b_new
    # 当所训练模型为线性核函数时
    #Equation (J22) 计算w的值
    if model.user_linear_optim:
         model.w = model.w + y1 * (a1 - alph1)*model.X[i1] + y2 * (a2 - alph2) * model.X[i2]
    #在alphas矩阵中分别更新a1, a2的值
    #Update model object with new alphas & threshold
    model.alphas[i1] = a1
    model.alphas[i2] = a2
    #优化完成,更新差值矩阵的对应值
    #同时更新差值矩阵其它值
    model.errors[i1] = 0
    model.errors[i2] = 0
    #更新差值 Equation (12)
    for i in range(model.m):
        if 0 < model.alphas[i] < model.C:
            model.errors[i] += y1*(a1 - alph1)*model.kernel(model.X[i1],model.X[i]) + \
                            y2*(a2 - alph2)*model.kernel(model.X[i2], model.X[i]) + model.b - b_new
    return 1, model

def get_error(model, i1):
    if 0< model.alphas[i1] <model.C:
        return model.errors[i1]
    else:
        return decision_function_output(model,i1) - model.y[i1]


    
    
def examine_example(i2, model):
    y2 = model.y[i2]
    alph2 = model.alphas[i2]
    E2 = get_error(model, i2)
    r2 = E2 * y2
    #重点:这一段的重点在于确定 alpha1, 也就是old a1,并送到take_step去analytically 优化
    # 下面条件之一满足,进入if开始找第二个alpha,送到take_step进行优化
    if ((r2 < -tol and alph2 < model.C) or (r2 > tol and alph2 > 0)):
        if len(model.alphas[(model.alphas != 0) & (model.alphas != model.C)]) > 1:#筛选器
            #选择Ei矩阵中差值最大的先进性优化
            # 要想|E1-E2|最大,只需要在E2为正时,选择最小的Ei作为E1
            # 在E2为负时选择最大的Ei作为E1
            if model.errors[i2] > 0:
                i1 = np.argmin(model.errors)
            elif model.errors[i2] <= 0:
                i1 = np.argmax(model.errors)
            step_result,model = take_step(i1,i2, model)
            if step_result:
                return 1, model
        # 循环所有非0 非C alphas值进行优化,随机选择起始点
        for i1 in np.roll(np.where((model.alphas != 0) & (model.alphas != model.C))[0],
                          np.random.choice(np.arange(model.m))):
            step_result, model = take_step(i1, i2, model)
            if step_result:
                return 1, model
        
        #alpha2确定的情况下,如何选择alpha1? 循环所有(m-1) alphas, 随机选择起始点
        for i1 in np.roll(np.arange(model.m), np.random.choice(np.arange(model.m))):
            #print("what is the first i1",i1)
            step_result, model = take_step(i1, i2, model)
           
            if step_result:
                return 1, model
    #先看最上面的if语句,如果if条件不满足,说明KKT条件已满足,找其它样本进行优化,则执行下面这句,退出
    return 0, model


#核心函数
def fit(model):
   
    numChanged = 0  #numChanged存放优化返回的结果,如果优化成功,则返回1,反之为0
    examineAll = 1  #examineAll表示从0号元素开始优化,如果所有都优化完成,则赋值为0
    #loop num record
    #计数器,记录优化时的循环次数
    loopnum = 0
    loopnum1 = 0
    loopnum2 = 0
    # 当numChanged = 0 and examineAll = 0时 循环退出
    # 实际是顺序地执行完所有的样本,也就是第一个if中的循环,
    # 并且 else中的循环没有可优化的alpha,目标函数收敛了: 在容差之内,并且满足KKT条件
    # 则循环退出,如果执行2000次循环仍未收敛,也退出
    # 重点:这段的重点在于确定 alpha2,也就是old a 2, 或者说alpha2的下标,old a2和old a1都是heuristically 选择
    while(numChanged > 0) or (examineAll): 
        numChanged = 0
        if loopnum == 2000:#设置循环次数
            break
        loopnum = loopnum + 1
        if examineAll:
            loopnum1 = loopnum1 + 1 # 记录顺序一个一个选择alpha2时的循环次数
            # # 从0,1,2,3,...,m顺序选择a2的,送给examine_example选择alpha1,总共m(m-1)种选法
            for i in range(model.alphas.shape[0]): 
                examine_result, model = examine_example(i, model)
                numChanged += examine_result
        else:  #上面if里m(m-1)执行完的后执行 
            loopnum2 = loopnum2 + 1
            # loop over examples where alphas are not already at their limits
            for i in np.where((model.alphas != 0) & (model.alphas != model.C))[0]:#筛选器,用于筛选alpha
                examine_result, model = examine_example(i, model)
                numChanged += examine_result
        if examineAll == 1:
            examineAll = 0
        elif numChanged == 0:
            examineAll = 1
    print("loopnum012",loopnum,":", loopnum1,":", loopnum2)   
    return model
# can be replaced as per different model u want to show

#主程序部分
# 生成测试数据,训练样本
X_train, y = make_blobs(n_samples = 1000, centers =2, n_features=2, random_state = 3)
#make_blobs表示是 sklearn.datasets中的一个函数,主要是产生聚类数据集,产生一个数据集和相应的标签
#random_state表示可以固定生成的数据,给定数之后,每次生成的数据集就是固定的
# center表示标签的种类数

scaler = StandardScaler()                            
X_train_scaled = scaler.fit_transform(X_train, y)# 标准化,训练样本异常大或异常小会影响样本的正确训练,如果数据的分布很分散也会影响 
y=2*y-1#按照支持向量机惯例,将响应变量的取值由{0,1}变换为{-1,1}
# set model parameters and initial values
C = 20.0 #为一个超参数,惩罚参数,自行设定
m = len(X_train_scaled)#计算标准化后训练集的个数
initial_alphas=np.zeros(m)#定义初始化alpha,返回一个元素全为0且长度等于训练集个数的数组,我们的目标就是找所有的alpha值,使目标函数最优,
                          #只有样本点在间隔内才不为0,其他均为0     
initial_b=0.0#初始化截距
tol = 0.01 # #软间隔优化目标的ε允许样本错误的参数
eps = 0.01 # 设置允许的终止判据(默认为0.001)
#初始化smo数据结构
model = SMOStruct(X_train_scaled, y, C, linear_kernel, initial_alphas, initial_b, np.zeros(m),user_linear_optim=True)
#print("model created ...")
#初始化差错矩阵,调用判别函数,差错矩阵为预测值与真实值的的差
initial_error = decision_function(model.alphas, model.y, model.kernel, model.X, model.X, model.b) - model.y
model.errors = initial_error
np.random.seed(0)
#主函数到此结束



 
# 初始化smo结构,使用高斯核函数
model = SMOStruct(X_train_scaled, y, C, lambda x, y: gaussian_kernel(x,y,sigma=0.5),
                  initial_alphas, initial_b, np.zeros(m), user_linear_optim=False)
 
#initialize error cache
initial_error = decision_function(model.alphas, model.y, model.kernel,
                                   model.X, model.X, model.b) - model.y
model.errors = initial_error  

print("开始拟合模型...")
#开始训练
output = fit(model)
#绘制训练完,找到分割平面的图
fig,ax = plt.subplots()
grid,ax = plot_decision_boundary(output, ax)
plt.savefig("squares1.png",
            bbox_inches ="tight",
            pad_inches = 1,
            transparent = True,
            facecolor ="w",
            edgecolor ='w',
            dpi=300,
            orientation ='landscape')

输出结果:

开始拟合模型...
loopnum012 2000 : 1 : 1999

97e7893408574e85ab7bca26ee709408.png

 

(2)使用非线性数据(曲线),采用SMO算法求解支持向量机分类

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs,make_circles,make_moons
from sklearn.preprocessing import StandardScaler
 
    
    
class SMOStruct:
    """构造SMO的数据结构"""
    def __init__(self, X, y, C, kernel, alphas, b, errors, user_linear_optim):
        self.X = X              # 训练样本
        self.y = y              # 类别
        self.C = C              # 正则化常量,用于调整(过)拟合的程度
        self.kernel = kernel    # 核函数,实现了两个核函数,线性和高斯(RBF)
        self.alphas = alphas    # 拉格朗日乘子,与样本一一相对
        self.b = b              # 截距b
        self.errors = errors    # 差值矩阵,用于存储alpha值实际与预测值得差值,其数量与样本一一相对
        
        self.m, self.n = np.shape(self.X)    #m为训练样本的个数和n为样本的维度
                                             
 
        self.user_linear_optim = user_linear_optim    # 选择模型核函数,选择是,则使用线性核函数,否则使用RBF核函数(高斯核函数)
        self.w = np.zeros(self.n)     # 初始化权重w的值,主要用于线性核函数
        #self.b = 0               
 
 
   
 
def linear_kernel(x,y,b=1):
    #线性核函数
    """ returns the linear combination of arrays 'x' and 'y' with
    the optional bias term 'b' (set to 1 by default). """
    result = x @ y.T + b
    return result # 注意矩阵乘法的@运算符
 
  
    
def gaussian_kernel(x,y, sigma=1):
    #高斯核函数
    """设置默认sigma=1 """
 
    if np.ndim(x) == 1 and np.ndim(y) == 1:
        result = np.exp(-(np.linalg.norm(x-y,2))**2/(2*sigma**2))
    elif(np.ndim(x)>1 and np.ndim(y) == 1) or (np.ndim(x) == 1 and np.ndim(y)>1):
        result = np.exp(-(np.linalg.norm(x-y, 2, axis=1)**2)/(2*sigma**2))
    elif np.ndim(x) > 1 and np.ndim(y) > 1 :
        result = np.exp(-(np.linalg.norm(x[:, np.newaxis]- y[np.newaxis, :], 2, axis = 2) ** 2)/(2*sigma**2))
    return result
 
 
 #判别函数1,用于单一样本
def decision_function_output(model,i):
    if model.user_linear_optim:
        #Equation (J1)
        #return float(np.dot(model.w.T, model.X[i])) - model.b
        return float(model.w.T @ model.X[i]) - model.b
    else:
        #Equation (J10)
        return np.sum([model.alphas[j] * model.y[j] * model.kernel(model.X[j], model.X[i]) for j in range(model.m)]) - model.b
 
 
    
# 判别函数2,用于多个样本
def decision_function(alphas, target, kernel, X_train, x_test, b):
    """ Applies the SVM decision function to the input feature vectors in 'x_test'.
    """
    result = (alphas * target) @ kernel(X_train, x_test) - b   # *,@ 两个Operators的区别?
    
    return result
 
    
    
    
    
def plot_decision_boundary(model, ax, resolution = 100, colors=('b','k','r'), levels = (-1, 0, 1)):
    """
    画出分割平面及支持平面,
    用的是等高线的方法
 
    """

    #生成横坐标与纵坐标的网格[100x100]
    #随后评估整个空间的模型
    xrange = np.linspace(model.X[:,0].min(), model.X[:, 0].max(), resolution)#取样本当中横坐标x的最小值与最大值,均等分100份
    yrange = np.linspace(model.X[:,1].min(), model.X[:, 1].max(), resolution)#取纵坐标的最小值与最大值,均等分100份
    grid = [[decision_function(model.alphas,model.y, model.kernel, model.X,
                               np.array([xr,yr]), model.b) for xr in xrange] for yr in yrange]
   
    grid = np.array(grid).reshape(len(xrange), len(yrange))
 
 
 
   
    ax.contour(xrange, yrange, grid, levels=levels, linewidths = (1,1,1),
               linestyles = ('--', '-', '--'), colors=colors)   #绘制等高线,展示间隔
    ax.scatter(model.X[:,0], model.X[:, 1],
               c=model.y, cmap = plt.cm.viridis, lw=0, alpha =0.25) #绘制所有样本点的散点图
 
    #as circled points (linewidth >0)
    mask = np.round(model.alphas, decimals = 2) !=0.0
    ax.scatter(model.X[mask,0], model.X[mask,1],
               c=model.y[mask], cmap=plt.cm.viridis, lw=1, edgecolors='k')#画出支持向量(alpha不等于0的点)
 
    return grid, ax
 
    
   
    
# 选择了alpha2、 alpha1后,开始第一步优化,然后迭代, “第二层循环,内循环”
# 主要的优化步骤在这里发生
def take_step(i1, i2, model):
   
    #skip if chosen alphas are the same
    if i1 == i2:
        return 0, model
    # a1, a2 的原值,old value,优化在于产生优化后的值,新值 new value

    alph1 = model.alphas[i1]
    alph2 = model.alphas[i2]
   
    y1 = model.y[i1]
    y2 = model.y[i2]
 
    E1 = get_error(model, i1)
    E2 = get_error(model, i2)
    s = y1 * y2
 
    # 计算alpha的边界,L, H
    # compute L & H, the bounds on new possible alpha values
    if(y1 != y2):   
        #y1,y2 异号,使用 Equation (J13)
        L = max(0, alph2 - alph1)
        H = min(model.C, model.C + alph2 - alph1)
    elif (y1 == y2):
        #y1,y2 同号,使用 Equation (J14)
        L = max(0, alph1+alph2 - model.C)
        H = min(model.C, alph1 + alph2)
    if (L==H):
        return 0, model
 
    #分别计算样本1, 2对应的核函数组合,目的在于计算eta
    #也就是求一阶导数后的值,目的在于计算a2new
    k11 = model.kernel(model.X[i1], model.X[i1])
    k12 = model.kernel(model.X[i1], model.X[i2])
    k22 = model.kernel(model.X[i2], model.X[i2])
    #计算 eta,equation (J15)
    eta = k11 + k22 - 2*k12
    
    #如论文中所述,分两种情况根据eta为正positive 还是为负或0来计算计算a2 new
    
    if(eta>0): 
        #equation (J16) 计算alpha2
        a2 = alph2 + y2 * (E1 - E2)/eta
        #clip a2 based on bounds L & H
        #把a2夹到限定区间 equation (J17)
        if L < a2 < H:
            a2 = a2
        elif (a2 <= L):
            a2 = L
        elif (a2 >= H):
            a2 = H
    #如果eta不为正(为负或0)
    #if eta is non-positive, move new a2 to bound with greater objective function value
    else:
        # Equation (J19)
        # 在特殊情况下,eta可能不为正not be positive
        f1 = y1*(E1 + model.b) - alph1*k11 - s*alph2*k12
        f2 = y2 * (E2 + model.b) - s* alph1 * k12 - alph2 * k22
 
        L1 = alph1 + s*(alph2 - L)
        H1 = alph1 + s*(alph2 - H)
 
        Lobj = L1 * f1 + L * f2 + 0.5 * (L1 ** 2) * k11 \
               + 0.5 * (L**2) * k22 + s * L * L1 * k12
               
        Hobj = H1 * f1 + H * f2 + 0.5 * (H1**2) * k11 \
               + 0.5 * (H**2) * k22 + s * H * H1 * k12
               
        if Lobj < Hobj - eps:
            a2 = L
        elif Lobj > Hobj + eps:
            a2 = H
        else:
            a2 = alph2
 
    #当new a2 千万分之一接近C或0是,就让它等于C或0
    if a2 <1e-8:
        a2 = 0.0
    elif a2 > (model.C - 1e-8):
        a2 = model.C
    #超过容差仍不能优化时,跳过
    #If examples can't be optimized within epsilon(eps), skip this pair
    if (np.abs(a2 - alph2) < eps * (a2 + alph2 + eps)):
        return 0, model
    a1 = alph1 + s * (alph2 - a2)    #根据新 a2计算 新 a1 Equation(J18)
    b1 = E1 + y1*(a1 - alph1) * k11 + y2 * (a2 - alph2) * k12 + model.b   #更新截距b的值 Equation (J20)
    b2 = E2 + y1*(a1 - alph1) * k12 + y2 * (a2 - alph2) * k22 + model.b  #equation (J21)
    # Set new threshoold based on if a1 or a2 is bound by L and/or H
    if 0 < a1 and a1 < C:
        b_new =b1
    elif 0 < a2 and a2 < C:
        b_new = b2
    #Average thresholds if both are bound
    else:
        b_new = (b1 + b2) * 0.5
    #update model threshold
    model.b = b_new
    # 当所训练模型为线性核函数时
    #Equation (J22) 计算w的值
    if model.user_linear_optim:
         model.w = model.w + y1 * (a1 - alph1)*model.X[i1] + y2 * (a2 - alph2) * model.X[i2]
    #在alphas矩阵中分别更新a1, a2的值
    #Update model object with new alphas & threshold
    model.alphas[i1] = a1
    model.alphas[i2] = a2
    #优化完成,更新差值矩阵的对应值
    #同时更新差值矩阵其它值
    model.errors[i1] = 0
    model.errors[i2] = 0
    #更新差值 Equation (12)
    for i in range(model.m):
        if 0 < model.alphas[i] < model.C:
            model.errors[i] += y1*(a1 - alph1)*model.kernel(model.X[i1],model.X[i]) + \
                            y2*(a2 - alph2)*model.kernel(model.X[i2], model.X[i]) + model.b - b_new
    return 1, model

def get_error(model, i1):
    if 0< model.alphas[i1] <model.C:
        return model.errors[i1]
    else:
        return decision_function_output(model,i1) - model.y[i1]


    
    
def examine_example(i2, model):
    y2 = model.y[i2]
    alph2 = model.alphas[i2]
    E2 = get_error(model, i2)
    r2 = E2 * y2
    #重点:这一段的重点在于确定 alpha1, 也就是old a1,并送到take_step去analytically 优化
    # 下面条件之一满足,进入if开始找第二个alpha,送到take_step进行优化
    if ((r2 < -tol and alph2 < model.C) or (r2 > tol and alph2 > 0)):
        if len(model.alphas[(model.alphas != 0) & (model.alphas != model.C)]) > 1:#筛选器
            #选择Ei矩阵中差值最大的先进性优化
            # 要想|E1-E2|最大,只需要在E2为正时,选择最小的Ei作为E1
            # 在E2为负时选择最大的Ei作为E1
            if model.errors[i2] > 0:
                i1 = np.argmin(model.errors)
            elif model.errors[i2] <= 0:
                i1 = np.argmax(model.errors)
            step_result,model = take_step(i1,i2, model)
            if step_result:
                return 1, model
        # 循环所有非0 非C alphas值进行优化,随机选择起始点
        for i1 in np.roll(np.where((model.alphas != 0) & (model.alphas != model.C))[0],
                          np.random.choice(np.arange(model.m))):
            step_result, model = take_step(i1, i2, model)
            if step_result:
                return 1, model
        
        #alpha2确定的情况下,如何选择alpha1? 循环所有(m-1) alphas, 随机选择起始点
        for i1 in np.roll(np.arange(model.m), np.random.choice(np.arange(model.m))):
            #print("what is the first i1",i1)
            step_result, model = take_step(i1, i2, model)
           
            if step_result:
                return 1, model
    #先看最上面的if语句,如果if条件不满足,说明KKT条件已满足,找其它样本进行优化,则执行下面这句,退出
    return 0, model


#核心函数
def fit(model):
   
    numChanged = 0  #numChanged存放优化返回的结果,如果优化成功,则返回1,反之为0
    examineAll = 1  #examineAll表示从0号元素开始优化,如果所有都优化完成,则赋值为0
    #loop num record
    #计数器,记录优化时的循环次数
    loopnum = 0
    loopnum1 = 0
    loopnum2 = 0
    # 当numChanged = 0 and examineAll = 0时 循环退出
    # 实际是顺序地执行完所有的样本,也就是第一个if中的循环,
    # 并且 else中的循环没有可优化的alpha,目标函数收敛了: 在容差之内,并且满足KKT条件
    # 则循环退出,如果执行2000次循环仍未收敛,也退出
    # 重点:这段的重点在于确定 alpha2,也就是old a 2, 或者说alpha2的下标,old a2和old a1都是heuristically 选择
    while(numChanged > 0) or (examineAll): 
        numChanged = 0
        if loopnum == 2000:#设置循环次数
            break
        loopnum = loopnum + 1
        if examineAll:
            loopnum1 = loopnum1 + 1 # 记录顺序一个一个选择alpha2时的循环次数
            # # 从0,1,2,3,...,m顺序选择a2的,送给examine_example选择alpha1,总共m(m-1)种选法
            for i in range(model.alphas.shape[0]): 
                examine_result, model = examine_example(i, model)
                numChanged += examine_result
        else:  #上面if里m(m-1)执行完的后执行 
            loopnum2 = loopnum2 + 1
            # loop over examples where alphas are not already at their limits
            for i in np.where((model.alphas != 0) & (model.alphas != model.C))[0]:#筛选器,用于筛选alpha
                examine_result, model = examine_example(i, model)
                numChanged += examine_result
        if examineAll == 1:
            examineAll = 0
        elif numChanged == 0:
            examineAll = 1
    print("loopnum012",loopnum,":", loopnum1,":", loopnum2)   
    return model
# can be replaced as per different model u want to show


#产生非线性数据,交叉的
X_train,y = make_moons(n_samples = 500, noise=0.2,
                        random_state =1)
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train, y)
y=2*y-1
 
#print('X_train',':', X_train)
# print('y',':',y)
 
#Set model parameters and initial values
C = 1.0
m = len(X_train_scaled)
initial_alphas = np.zeros(m)
initial_b = 0.0
 
# Set tolerances
tol = 0.01 # error tolerance
eps = 0.01 # alpha tolerance
 
# 初始化smo结构,使用高斯核函数
model = SMOStruct(X_train_scaled, y, C, lambda x, y: gaussian_kernel(x,y,sigma=0.5),
                  initial_alphas, initial_b, np.zeros(m), user_linear_optim=False)
 
#initialize error cache
#先把这个注释掉
initial_error = decision_function(model.alphas, model.y, model.kernel,
                                   model.X, model.X, model.b) - model.y
model.errors = initial_error 
 

print("开始拟合模型...")
#开始训练
output = fit(model)
#绘制训练完,找到分割平面的图
fig,ax = plt.subplots()
grid,ax = plot_decision_boundary(output, ax)

plt.savefig("squares1.png",
            bbox_inches ="tight",
            pad_inches = 1,
            transparent = True,
            facecolor ="w",
            edgecolor ='w',
            dpi=300,
            orientation ='landscape')

输出结果:

开始拟合模型...
loopnum012 2000 : 9 : 1991

52b2542da90d4438b33a606426a20be8.png

 

(3)使用非线性数据(交叉),采用SMO算法求解支持向量机分类

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs,make_circles,make_moons
from sklearn.preprocessing import StandardScaler
 
    
    
class SMOStruct:
    """构造SMO的数据结构"""
    def __init__(self, X, y, C, kernel, alphas, b, errors, user_linear_optim):
        self.X = X              # 训练样本
        self.y = y              # 类别
        self.C = C              # 正则化常量,用于调整(过)拟合的程度
        self.kernel = kernel    # 核函数,实现了两个核函数,线性和高斯(RBF)
        self.alphas = alphas    # 拉格朗日乘子,与样本一一相对
        self.b = b              # 截距b
        self.errors = errors    # 差值矩阵,用于存储alpha值实际与预测值得差值,其数量与样本一一相对
        
        self.m, self.n = np.shape(self.X)    #m为训练样本的个数和n为样本的维度
                                             
 
        self.user_linear_optim = user_linear_optim    # 选择模型核函数,选择是,则使用线性核函数,否则使用RBF核函数(高斯核函数)
        self.w = np.zeros(self.n)     # 初始化权重w的值,主要用于线性核函数
        #self.b = 0               
 
 
   
 
def linear_kernel(x,y,b=1):
    #线性核函数
    """ returns the linear combination of arrays 'x' and 'y' with
    the optional bias term 'b' (set to 1 by default). """
    result = x @ y.T + b
    return result # 注意矩阵乘法的@运算符
 
    
    
def gaussian_kernel(x,y, sigma=1):
    #高斯核函数
    """设置默认sigma=1 """
 
    if np.ndim(x) == 1 and np.ndim(y) == 1:
        result = np.exp(-(np.linalg.norm(x-y,2))**2/(2*sigma**2))
    elif(np.ndim(x)>1 and np.ndim(y) == 1) or (np.ndim(x) == 1 and np.ndim(y)>1):
        result = np.exp(-(np.linalg.norm(x-y, 2, axis=1)**2)/(2*sigma**2))
    elif np.ndim(x) > 1 and np.ndim(y) > 1 :
        result = np.exp(-(np.linalg.norm(x[:, np.newaxis]- y[np.newaxis, :], 2, axis = 2) ** 2)/(2*sigma**2))
    return result
 
 
 #判别函数1,用于单一样本
def decision_function_output(model,i):
    if model.user_linear_optim:
        #Equation (J1)
        #return float(np.dot(model.w.T, model.X[i])) - model.b
        return float(model.w.T @ model.X[i]) - model.b
    else:
        #Equation (J10)
        return np.sum([model.alphas[j] * model.y[j] * model.kernel(model.X[j], model.X[i]) for j in range(model.m)]) - model.b
 
 
    
# 判别函数2,用于多个样本
def decision_function(alphas, target, kernel, X_train, x_test, b):
    """ Applies the SVM decision function to the input feature vectors in 'x_test'.
    """
    result = (alphas * target) @ kernel(X_train, x_test) - b   # *,@ 两个Operators的区别?
    
    return result
 
    
    
    
    
def plot_decision_boundary(model, ax, resolution = 100, colors=('b','k','r'), levels = (-1, 0, 1)):
    """
    画出分割平面及支持平面,
    用的是等高线的方法
 
    """
 
    #生成横坐标与纵坐标的网格[100x100]
    #随后评估整个空间的模型
    xrange = np.linspace(model.X[:,0].min(), model.X[:, 0].max(), resolution)#取样本当中横坐标x的最小值与最大值,均等分100份
    yrange = np.linspace(model.X[:,1].min(), model.X[:, 1].max(), resolution)#取纵坐标的最小值与最大值,均等分100份
    grid = [[decision_function(model.alphas,model.y, model.kernel, model.X,
                               np.array([xr,yr]), model.b) for xr in xrange] for yr in yrange]
   
    grid = np.array(grid).reshape(len(xrange), len(yrange))
 
 
 
   
    ax.contour(xrange, yrange, grid, levels=levels, linewidths = (1,1,1),
               linestyles = ('--', '-', '--'), colors=colors)   #绘制等高线,展示间隔
    ax.scatter(model.X[:,0], model.X[:, 1],
               c=model.y, cmap = plt.cm.viridis, lw=0, alpha =0.25) #绘制所有样本点的散点图
 
    #as circled points (linewidth >0)
    mask = np.round(model.alphas, decimals = 2) !=0.0
    ax.scatter(model.X[mask,0], model.X[mask,1],
               c=model.y[mask], cmap=plt.cm.viridis, lw=1, edgecolors='k')#画出支持向量(alpha不等于0的点)
 
    return grid, ax
 
    
    
    
    
# 选择了alpha2、 alpha1后,开始第一步优化,然后迭代, “第二层循环,内循环”
# 主要的优化步骤在这里发生
def take_step(i1, i2, model):
   
    #skip if chosen alphas are the same
    if i1 == i2:
        return 0, model
    # a1, a2 的原值,old value,优化在于产生优化后的值,新值 new value

    alph1 = model.alphas[i1]
    alph2 = model.alphas[i2]
   
    y1 = model.y[i1]
    y2 = model.y[i2]
 
    E1 = get_error(model, i1)
    E2 = get_error(model, i2)
    s = y1 * y2
 
    # 计算alpha的边界,L, H
    # compute L & H, the bounds on new possible alpha values
    if(y1 != y2):   
        #y1,y2 异号,使用 Equation (J13)
        L = max(0, alph2 - alph1)
        H = min(model.C, model.C + alph2 - alph1)
    elif (y1 == y2):
        #y1,y2 同号,使用 Equation (J14)
        L = max(0, alph1+alph2 - model.C)
        H = min(model.C, alph1 + alph2)
    if (L==H):
        return 0, model
 
    #分别计算样本1, 2对应的核函数组合,目的在于计算eta
    #也就是求一阶导数后的值,目的在于计算a2new
    k11 = model.kernel(model.X[i1], model.X[i1])
    k12 = model.kernel(model.X[i1], model.X[i2])
    k22 = model.kernel(model.X[i2], model.X[i2])
    #计算 eta,equation (J15)
    eta = k11 + k22 - 2*k12
    
    #如论文中所述,分两种情况根据eta为正positive 还是为负或0来计算计算a2 new
    
    if(eta>0): 
        #equation (J16) 计算alpha2
        a2 = alph2 + y2 * (E1 - E2)/eta
        #clip a2 based on bounds L & H
        #把a2夹到限定区间 equation (J17)
        if L < a2 < H:
            a2 = a2
        elif (a2 <= L):
            a2 = L
        elif (a2 >= H):
            a2 = H
    #如果eta不为正(为负或0)
    #if eta is non-positive, move new a2 to bound with greater objective function value
    else:
        # Equation (J19)
        # 在特殊情况下,eta可能不为正not be positive
        f1 = y1*(E1 + model.b) - alph1*k11 - s*alph2*k12
        f2 = y2 * (E2 + model.b) - s* alph1 * k12 - alph2 * k22
 
        L1 = alph1 + s*(alph2 - L)
        H1 = alph1 + s*(alph2 - H)
 
        Lobj = L1 * f1 + L * f2 + 0.5 * (L1 ** 2) * k11 \
               + 0.5 * (L**2) * k22 + s * L * L1 * k12
               
        Hobj = H1 * f1 + H * f2 + 0.5 * (H1**2) * k11 \
               + 0.5 * (H**2) * k22 + s * H * H1 * k12
               
        if Lobj < Hobj - eps:
            a2 = L
        elif Lobj > Hobj + eps:
            a2 = H
        else:
            a2 = alph2
 
    #当new a2 千万分之一接近C或0是,就让它等于C或0
    if a2 <1e-8:
        a2 = 0.0
    elif a2 > (model.C - 1e-8):
        a2 = model.C
    #超过容差仍不能优化时,跳过
    #If examples can't be optimized within epsilon(eps), skip this pair
    if (np.abs(a2 - alph2) < eps * (a2 + alph2 + eps)):
        return 0, model
    a1 = alph1 + s * (alph2 - a2)    #根据新 a2计算 新 a1 Equation(J18)
    b1 = E1 + y1*(a1 - alph1) * k11 + y2 * (a2 - alph2) * k12 + model.b   #更新截距b的值 Equation (J20)
    b2 = E2 + y1*(a1 - alph1) * k12 + y2 * (a2 - alph2) * k22 + model.b  #equation (J21)
    # Set new threshoold based on if a1 or a2 is bound by L and/or H
    if 0 < a1 and a1 < C:
        b_new =b1
    elif 0 < a2 and a2 < C:
        b_new = b2
    #Average thresholds if both are bound
    else:
        b_new = (b1 + b2) * 0.5
    #update model threshold
    model.b = b_new
    # 当所训练模型为线性核函数时
    #Equation (J22) 计算w的值
    if model.user_linear_optim:
         model.w = model.w + y1 * (a1 - alph1)*model.X[i1] + y2 * (a2 - alph2) * model.X[i2]
    #在alphas矩阵中分别更新a1, a2的值
    #Update model object with new alphas & threshold
    model.alphas[i1] = a1
    model.alphas[i2] = a2
    #优化完成,更新差值矩阵的对应值
    #同时更新差值矩阵其它值
    model.errors[i1] = 0
    model.errors[i2] = 0
    #更新差值 Equation (12)
    for i in range(model.m):
        if 0 < model.alphas[i] < model.C:
            model.errors[i] += y1*(a1 - alph1)*model.kernel(model.X[i1],model.X[i]) + \
                            y2*(a2 - alph2)*model.kernel(model.X[i2], model.X[i]) + model.b - b_new
    return 1, model

def get_error(model, i1):
    if 0< model.alphas[i1] <model.C:
        return model.errors[i1]
    else:
        return decision_function_output(model,i1) - model.y[i1]


    
    
def examine_example(i2, model):
    y2 = model.y[i2]
    alph2 = model.alphas[i2]
    E2 = get_error(model, i2)
    r2 = E2 * y2
    #重点:这一段的重点在于确定 alpha1, 也就是old a1,并送到take_step去analytically 优化
    # 下面条件之一满足,进入if开始找第二个alpha,送到take_step进行优化
    if ((r2 < -tol and alph2 < model.C) or (r2 > tol and alph2 > 0)):
        if len(model.alphas[(model.alphas != 0) & (model.alphas != model.C)]) > 1:#筛选器
            #选择Ei矩阵中差值最大的先进性优化
            # 要想|E1-E2|最大,只需要在E2为正时,选择最小的Ei作为E1
            # 在E2为负时选择最大的Ei作为E1
            if model.errors[i2] > 0:
                i1 = np.argmin(model.errors)
            elif model.errors[i2] <= 0:
                i1 = np.argmax(model.errors)
            step_result,model = take_step(i1,i2, model)
            if step_result:
                return 1, model
        # 循环所有非0 非C alphas值进行优化,随机选择起始点
        for i1 in np.roll(np.where((model.alphas != 0) & (model.alphas != model.C))[0],
                          np.random.choice(np.arange(model.m))):
            step_result, model = take_step(i1, i2, model)
            if step_result:
                return 1, model
        
        #alpha2确定的情况下,如何选择alpha1? 循环所有(m-1) alphas, 随机选择起始点
        for i1 in np.roll(np.arange(model.m), np.random.choice(np.arange(model.m))):
            #print("what is the first i1",i1)
            step_result, model = take_step(i1, i2, model)
           
            if step_result:
                return 1, model
    #先看最上面的if语句,如果if条件不满足,说明KKT条件已满足,找其它样本进行优化,则执行下面这句,退出
    return 0, model


#核心函数
def fit(model):
   
    numChanged = 0  #numChanged存放优化返回的结果,如果优化成功,则返回1,反之为0
    examineAll = 1  #examineAll表示从0号元素开始优化,如果所有都优化完成,则赋值为0
    #loop num record
    #计数器,记录优化时的循环次数
    loopnum = 0
    loopnum1 = 0
    loopnum2 = 0
    # 当numChanged = 0 and examineAll = 0时 循环退出
    # 实际是顺序地执行完所有的样本,也就是第一个if中的循环,
    # 并且 else中的循环没有可优化的alpha,目标函数收敛了: 在容差之内,并且满足KKT条件
    # 则循环退出,如果执行2000次循环仍未收敛,也退出
    # 重点:这段的重点在于确定 alpha2,也就是old a 2, 或者说alpha2的下标,old a2和old a1都是heuristically 选择
    while(numChanged > 0) or (examineAll): 
        numChanged = 0
        if loopnum == 2000:#设置循环次数
            break
        loopnum = loopnum + 1
        if examineAll:
            loopnum1 = loopnum1 + 1 # 记录顺序一个一个选择alpha2时的循环次数
            # # 从0,1,2,3,...,m顺序选择a2的,送给examine_example选择alpha1,总共m(m-1)种选法
            for i in range(model.alphas.shape[0]): 
                examine_result, model = examine_example(i, model)
                numChanged += examine_result
        else:  #上面if里m(m-1)执行完的后执行 
            loopnum2 = loopnum2 + 1
            # loop over examples where alphas are not already at their limits
            for i in np.where((model.alphas != 0) & (model.alphas != model.C))[0]:#筛选器,用于筛选alpha
                examine_result, model = examine_example(i, model)
                numChanged += examine_result
        if examineAll == 1:
            examineAll = 0
        elif numChanged == 0:
            examineAll = 1
    print("loopnum012",loopnum,":", loopnum1,":", loopnum2)   
    return model
# can be replaced as per different model u want to show

 



#产生非线性数据,曲线的
X_train, y = make_circles(n_samples=500, noise=0.2,factor=0.1,random_state=2)

#产生非线性数据,交叉的
#X_train,y = make_moons(n_samples = 500, noise=0.2,random_state =1)
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train, y)
y=2*y-1
 
#print('X_train',':', X_train)
# print('y',':',y)
 
#Set model parameters and initial values
C = 1.0
m = len(X_train_scaled)
initial_alphas = np.zeros(m)
initial_b = 0.0
 
# Set tolerances
tol = 0.01 # error tolerance
eps = 0.01 # alpha tolerance
 
# 初始化smo结构,使用高斯核函数
model = SMOStruct(X_train_scaled, y, C, lambda x, y: gaussian_kernel(x,y,sigma=0.5),initial_alphas, initial_b, np.zeros(m), user_linear_optim=False)
 
#initialize error cache
#先把这个注释掉
initial_error = decision_function(model.alphas, model.y, model.kernel,
                                   model.X, model.X, model.b) - model.y
model.errors = initial_error 
 

print("开始拟合模型...")
#开始训练
output = fit(model)
#绘制训练完,找到分割平面的图
fig,ax = plt.subplots()
grid,ax = plot_decision_boundary(output, ax)

plt.savefig("squares3.png",
            bbox_inches ="tight",
            pad_inches = 1,
            transparent = True,
            facecolor ="w",
            edgecolor ='w',
            dpi=300,
            orientation ='landscape')

输出结果:

开始拟合模型...
loopnum012 2000 : 12 : 1988

66ebafaa3e4e4ef5a62a591e43e4cb2d.png

 

4、参考文献

[1]J. Platt, “Sequential Minimal Optimization: A Fast Algorithm for Training Support Vector Machines,” Technical Report MSR-TR-98-14, Microsoft Research, 1998.


需要J. Platt 论文的家人们可以去百度网盘(永久有效)获取:

链接:https://pan.baidu.com/s/1qAu4ueR_ucJO_WbOKAYg2w?pwd=7woc 
提取码:7woc 
--来自百度网盘超级会员V5的分享


更多优质内容持续发布中,请移步主页查看。

   点赞+关注,下次不迷路!

 

  • 4
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

带我去滑雪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值