一、人工智能课程概述
1. 什么是人工智能
人工智能(Artificial Intelligence)是计算机科学的一个分支学科,主要研究用计算机模拟人的思考方式和行为方式,从而在某些领域代替人进行工作.
2. 人工智能的学科体系
以下是人工智能学科体系图:
-
机器学习(Machine Learning):人工智能的一个子学科,研究人工智能领域的基本算法、原理、思想方法,机器学习研究的内容在其它子学科都会用到
-
计算机视觉(Computer Vision):研究计算机处理、识别、理解图像、视频的相关技术
-
自然语言处理(Natural Language Processing):研究计算机理解人类自然语言的相关技术
-
语音处理:研究计算机理解识别、理解、合成语音的相关技术
3. 人工智能与传统软件的区别
-
传统软件:执行人的指令和想法,在执行之前人已经有了解决方案,无法超越人的思想和认识范围
-
人工智能:尝试突破人的思想和认识范围,让计算机学习到新的能力,尝试解决传统软件的难题
4. 课程介绍
1)课程内容
课程内容主要包括:
2)课程特点
-
内容多:包括机器学习、深度学习、计算机视觉、NLP、常用框架
-
难度大:学习难度较大,入门难、提高难、应用难
-
需要部分数学知识:记住结论、会调用API、能定性分析公式、初步的公式推导
-
需要反复学习:第一轮听懂主要内容、第二轮理解核心概念、第三轮熟悉代码编写、第四轮深入理解和应用
-
越学越深
3)学习方法
-
先听懂、重理解
-
先易后难,先听后写,先粗后细
-
跳过过难的知识点,抓大放小
-
多看不同作者的教材,多听不同老师的讲解
二、机器学习基本概念
1. 什么是机器学习
1975年图灵奖获得者、1978年诺贝尔经济学奖获得者、著名学者赫伯特.西蒙(Herbert Simon)曾下过一个定义:如果一个系统,能够通过执行某个过程,就此改进了它的性能,那么这个过程就是学习.由此可看出,学习的目的就是改善性能.
卡耐基梅隆大学机器学习和人工智能教授汤姆.米切尔(Tom Mitchell)在他的经典教材《机器学习》中,给出了更为具体的定义:对于某类任务(Task,简称T)和某项性能评价准则(Performance,简称P),如果一个计算机在程序T上,以P作为性能度量,随着经验(Experience,简称E)的积累,不断自我完善,那么我们称计算机程序从经验E中进行了学习.
例如,篮球运动员投篮训练过程:球员投篮(任务T),以准确率为性能度量(P),随着不断练习(经验E),准确率不断提高,这个过程称为学习.
2. 为什么需要机器学习
1)程序自我升级;
2)解决那些算法过于复杂,甚至没有已知算法的问题;
3)在机器学习的过程中,协助人类获得事物的洞见.
3. 机器学习的过程形式
1) 建模问题
所谓机器学习,在形式上可近似等同于在数据对象中通过统计、推理的方法,来寻找一个接受特定输入X,并给出预期输出Y功能函数f,即 Y = f(x). 这个函数以及确定函数的参数被称为模型.
2) 评估问题
针对已知的输入,函数给出的输出(预测值)与实际输出(目标值)之间存在一定误差,因此需要构建一个评估体系,根据误差大小判定函数的优劣.
3) 优化问题
学习的核心在与改善性能,通过数据对算法的反复锤炼,不断提升函数预测的准确性,直至获得能够满足实际需求的最优解,这个过程就是机器学习.
4. 机器学习的分类(重点)
1) 有监督、无监督、半监督学习
a) 有监督学习
在已知数据输出(经过标注的)的情况下对模型进行训练,根据输出进行调整、优化的学习方式称为有监督学习.即提供数据集的时候也提供答案,大量试错纠错具有机器学习能力提升。分类就是有监督学习。
b) 无监督学习
没有已知输出的情况下,仅仅根据输入信息的相关性,进行类别的划分.即提供数据,不告诉你数据答案,聚类是无监督学习的主要形式。
c) 半监督
先通过无监督学习划分类别,再人工标记通过有监督学习方式来预测输出.例如先无监督对相似的水果进行聚类,再通过有监督进行分类.
d) 强化学习
通过对不同决策结果的奖励、惩罚,使机器学习系统在经过足够长时间的训练以后,越来越倾向于接近期望结果的方向输出.
2) 批量学习、增量学习
a) 批量学习
将学习过程和应用过程分开,用全部训练数据训练模型,然后再在应用场景中进行预测,当预测结果不够理想时,重新回到学习过程,然后应用,如此循环.
b) 增量学习
将学习过程和应用过程统一起来,在应用的同时,以增量的方式不断学习新的内容,边训练、边预测。实际基本很少运用增量学习。
3) 基于模型学习、基于实例学习
a) 基于模型的学习
根据样本数据,建立用于联系输出和输出的某种数学模型,将待预测输入带入该模型,预测其结果. 例如有如下输入输出关系。一行是一个样本,一列是一个特征。
输入(x) | 输出(y) |
---|---|
1 | 2 |
2 | 4 |
3 | 6 |
4 | 8 |
根据数据,得到模型 y = 2x。即从数据中找出规律(即数学模型)叫模型学习。
预测:输入9时,输出是多少?
b) 基于实例的学习
根据以往经验,寻找与待预测输入最接近的样本,以其输出作为预测结果(从数据中心找答案). 例如有如下一组数据:
学历(x1) | 工作经验(x2) | 性别(x3) | 月薪(y) |
---|---|---|---|
本科 | 3 | 男 | 8000 |
硕士 | 2 | 女 | 10000 |
博士 | 2 | 男 | 15000 |
预测:本科,3,男 ==> 薪资?即从数据当中找答案叫基于实例学习。
5. 机器学习的一般过程(重点)
-
数据收集,手段如手工采集、设备自动化采集、爬虫等
数据来源:历史交易遗留数据(价值最高)
爬虫互联网公开采集(价值不高)
公开数据集,用于学习研究(价值低)
购买数据(价值低)
自己采集,如拍照等(价值高)
-
数据清洗:数据规范、具有较大误差的、没有意义的数据进行清理(如统一度量等)或丢弃。
注:以上称之为数据处理,不是重点但要会。包括数据检索、数据挖掘、爬虫......
3.选择模型(算法)
4.训练模型
5.模型评估
6.测试模型(5 -6步可合二为一)
注:3~6步主要是机器学习过程与重点,包括算法、框架、工具等......
-
应用模型
-
模型维护升级优化
6. 机器学习的典型应用
-
股价预测
-
推荐引擎
-
自然语言处理
-
语音处理:语音识别、语音合成
-
图像识别、人脸识别
-
……
7. 机器学习的基本问题(重点)
1) 回归问题
根据已知的输入和输出,寻找某种性能最佳的模型,将未知输出的输入代入模型,得到连续的输出。特征过程:从数据中提取特征的过程,深度学习阶段就是机器自己提取特征 例如:
-
根据房屋面积、地段、修建年代以及其它条件预测房屋价格
-
根据各种外部条件预测某支股票的价格
-
根据农业、气象等数据预测粮食收成
-
计算两个人脸的相似度
2) 分类问题
根据已知的输入和输出,寻找性能最佳的模型,将未知输出的输入带入模型,得到离散的输出,例如:
-
手写体识别(10个类别分类问题)
-
水果、鲜花、动物识别
-
工业产品瑕疵检测(良品、次品二分类问题)
-
识别一个句子表达的情绪(正面、负面、中性)
3) 聚类问题
根据已知输入的相似程度,将其划分为不同的群落,例如:
-
根据一批麦粒的数据,判断哪些属于同一个品种
-
根据客户在电商网站的浏览和购买历史,判断哪些客户对某件商品感兴趣
-
判断哪些客户具有更高的相似度
4) 降维问题
在性能损失尽可能小的情况下,降低数据的复杂度,数据规模缩小都称为降维问题.
8. 机器学习课程内容
三、数据预处理
1. 数据预处理的目的
1)去除无效数据、不规范数据、错误数据
2)补齐缺失值
3)对数据范围、量纲、格式、类型进行统一化处理,更容易进行后续计算
2. 预处理方法
1)标准化(均值移除)
让样本矩阵中的每一列的平均值为0,标准差为1. 如有三个数a, b, c,则平均值为:
$$
m = (a + b + c) / 3 \\ a' = a - m \\ b' = b - m \\ c' = c - m
$$
预处理后的平均值为0(自证为0):
$$
(a' + b' + c') / 3 =( (a + b + c) - 3m) / 3 = 0
$$
标准差公式:s = sqrt(((a - m)^2 + (b - m)^2 + (c - m)^2)/3)
标准化处理后我们得到数据:
a'' =a'/ s
b'' = b'/ s
c'' = c' / s
s'' = sqrt(((a' / s)^2 + (b' / s) ^ 2 + (c' / s) ^ 2) / 3)
=sqrt((a' ^ 2 + b' ^ 2 + c' ^ 2) / (3 *s ^2))
=1(自证为1)
标准差:又称均方差,是离均差平方的算术平均数的平方根,用σ表示 ,标准差能反映一个数据集的离散程度,不改变数据的性质。
代码示例:
""" 数据预处理:标准化(均值移除) 均值移除:调整数据分布,不改变数据性质。以列为处理单位 处理后每列均值为0,标准差为1 """ import numpy as np # 处理数组用 import sklearn.preprocessing as sp # 通用机器学习库的预处理模块 # 定义样本数据:这里是库里面的数组,而非列表,返回一个对象。 raw_samples = np.array( [[3.0, -1.0, 2.0], [0.0, 4.0, 3.0], [1.0, -4.0, 2.0]] ) std_samples = raw_samples.copy() # 复制数组,不对原数组产生影响 for col in std_samples.T: # 遍历数组每列,其中.T表示转置 col_mean = col.mean() # 求每列均值 col_mean是一个元素 col_std = col.std() # 求每列标准差 col -= col_mean # 每个元素减去均值 col 是<class 'numpy.ndarray'> col /= col_std # 每个元素除以标准差 print(std_samples) print() print(std_samples.mean(axis=0)) # 列方向求均值 均是0 print(std_samples.std(axis=0)) # 列方向求标准差 均是1
我们也可以通过sklearn提供sp.scale函数实现同样的功能,如下面代码所示:
std_samples = sp.scale(raw_samples) # 求标准移除 print(std_samples) print(std_samples.mean(axis=0)) print(std_samples.std(axis=0))
2)范围缩放
将样本矩阵中的每一列最小值和最大值设定为相同的区间,统一各特征值的范围.如有a, b, c三个数,其中b为最小值,c ‘ 为最大值,则:
$$
a' = a - b
$$
$$
b' = b - b
$$
$$
c' = c - b
$$
缩放计算方式如下公式所示:
$$
a'' = a' / c'
$$
$$
b'' = b' / c'
$$
$$
c'' = c' / c'
$$
计算完成后,最小值为0,最大值为1.以下是一个范围缩放的示例.
""" 02_min_max_scale_demo.py 范围缩放示例:以列为单位 范围缩放:将每列最小值转换为0,最大值转换为1 """ import numpy as np import sklearn.preprocessing as sp # 定义样本 raw_samples = np.array( [[1.0, 2.0, 3.0], [4.0, 5.0, 9.0], [7.0, 8.0, 11.0]] ) mms_samples = raw_samples.copy() # 复制数组 for col in mms_samples.T: # 遍历每一列 col_min = col.min() # 求每列最小值 col_max = col.max() # 求每列最大值 col -= col_min # 减去最小值 col /= (col_max - col_min) # 除max-min print(mms_samples)
我们也可以通过sklearn提供的对象实现同样的功能,如下面代码所示:
# 根据给定范围创建一个范围缩放器对象 mms = sp.MinMaxScaler(feature_range=(0, 1))# 定义对象(修改范围观察现象.默认也是0-1之间) # 使用范围缩放器实现特征值范围缩放 mms_samples = mms.fit_transform(raw_samples) # 缩放 print(mms_samples)
执行结果:
[[0. 0. 0. ] [0.5 0.5 0.75] [1. 1. 1. ]]
3)归一化
反映样本所占比率.用每个样本的每个特征值,除以该样本各个特征值绝对值之和.变换后的样本矩阵,每个样本的特征值绝对值之和为1.例如如下反映编程语言热度的样本中,2018年也2017年比较,Python开发人员数量减少了2万,但是所占比率确上升了:反应数据此消彼长的变化。
年份 | Python(万人) | Java(万人) | PHP(万人) |
---|---|---|---|
2017 | 10 | 20 | 5 |
2018 | 8 | 10 | 1 |
归一化预处理示例代码如下所示:
""" 03_normalize_demo.py 归一化示例 归一化:将每行数值转换为百分比(0~1),更好反应 出数据占比的变化 """ import numpy as np import sklearn.preprocessing as sp # 定义样本 raw_samples = np.array( [[10.0, 20.0, 5.0], [8.0, 10.0, 1.0]] ) nor_samples = raw_samples.copy() # 复制数组 for row in nor_samples: # 遍历每行 row /= abs(row).sum() # 每个数字除以绝对值之和 print(nor_samples) print("利用系统提供的API实现") nor_samples = sp.normalize(raw_samples, norm="l1") print(nor_samples)
在sklearn库中,可以调用sp.normalize()函数进行归一化处理,函数原型为:
sp.normalize(原始样本, norm='l2') # l1: l1范数,除以向量中各元素绝对值之和 # l2: l2范数,除以向量中各元素平方之和
使用sklearn库中归一化处理代码如下所指示:
nor_samples = sp.normalize(raw_samples, norm='l1') print(nor_samples) # 打印结果
4)二值化
根据一个事先给定的阈值,用0和1来表示特征值是否超过阈值.如考试及格判断。以下是实现二值化预处理的代码:
""" 04_binary_demo.py 二值化处理示例 二值化:将所有元素转换为两个相对的值中的一个 可以是0/1, -1/1等 """ import numpy as np import sklearn.preprocessing as sp # 定义样本 raw_samples = np.array([[65.5, 89.0, 73.0], [55.0, 99.0, 98.5], [45.0, 22.5, 60.0]]) bin_samples = raw_samples.copy() # 复制数组 # 生成掩码 mask1 = bin_samples < 60 # 小于60的元素返回True mask2 = bin_samples >= 60 # 大于等于60的元素返回True print(mask1) # 打印数组 print(mask2) # 打印数组 # 掩码计算进行二值化 bin_samples[mask1] = 0 # mask1中为True的元素设为0 bin_samples[mask2] = 1 # mask2中为True的元素设为1 print(bin_samples)
同样,也可以利用sklearn库来处理:
bin = sp.Binarizer(threshold=59) # 创建二值化对象(注意边界值) bin_samples = bin.transform(raw_samples) # 二值化预处理 print(bin_samples)
二值化编码会导致信息损失,是不可逆的数值转换.如果进行可逆转换,则需要用到独热编码.
5)独热编码
根据一个特征中值的个数来建立一个由一个1和若干个0组成的序列,用来序列对所有的特征值进行编码.例如有如下样本:
$$
\left[ \begin{matrix} 1 & 3 & 2\\ 7 & 5 & 4\\ 1 & 8 & 6\\ 7 & 3 & 9\\ \end{matrix} \right]
$$
对于第一列,有两个值,1使用10编码,7使用01编码
对于第二列,有三个值,3使用100编码,5使用010编码,8使用001编码
对于第三列,有四个值,2使用1000编码,4使用0100编码,6使用0010编码,9使用0001编码
编码字段,根据特征值的个数来进行编码,通过位置加以区分.通过独热编码后的结果为:
$$
\left[ \begin{matrix} 10 & 100 & 1000\\ 01 & 010 & 0100\\ 10 & 001 & 0010\\ 01 & 100 & 0001\\ \end{matrix} \right]
$$
使用sklearn库提供的功能进行独热编码的代码如下所示:
""" 05_one_hot_demo.py 独热编码示例 独热编码:将每个特征值转换为由一个1和一串0表示的 形式,在某些情况计算更方便 """ import numpy as np import sklearn.preprocessing as sp raw_samples = np.array([[1, 3, 2], [7, 5, 4], [1, 8, 6], [7, 3, 9]]) encoder = sp.OneHotEncoder( sparse=False, # 是否采用稀疏格式 dtype="int32", # 元素类型 categories="auto") # 自动产生编码值 # 编码 oh_samples = encoder.fit_transform(raw_samples) print(oh_samples) # 解码 print(encoder.inverse_transform(oh_samples))
执行结果:
[[1 0 1 0 0 1 0 0 0] [0 1 0 1 0 0 1 0 0] [1 0 0 0 1 0 0 1 0] [0 1 1 0 0 0 0 0 1]] [[1 3 2] [7 5 4] [1 8 6] [7 3 9]]
6)标签编码
根据字符串形式的特征值在特征序列中的位置,来为其指定一个数字标签,用于提供给基于数值算法的学习模型.与独热编码一样,皆可以编码解码可逆过程。代码如下所示:
# 标签编码 import numpy as np import sklearn.preprocessing as sp raw_samples = np.array(['audi', 'ford', 'audi', 'bmw','ford', 'bmw']) lb_encoder = sp.LabelEncoder() # 定义标签编码对象 lb_samples = lb_encoder.fit_transform(raw_samples) # 执行标签编码 print(lb_samples) print(lb_encoder.inverse_transform(lb_samples)) # 逆向转换
执行结果:
[0 2 0 1 2 1] ['audi' 'ford' 'audi' 'bmw' 'ford' 'bmw']
四、练习
1)判断以下哪个是回归问题,哪个是分类问题,哪个是聚类问题:
-
判断一封邮件是否为垃圾邮件(分类)
-
在图像上检测出人脸的位置(回归)
-
视频网站根据用户观看记录,找出喜欢看战争电影的用户(聚类)
2)分类和聚类主要区别是什么?(分类是有监督学习要标注数据,聚类是无监督学习不要标注数据)
3)判断以下哪些是数据降维问题
-
将8*8的矩阵缩小为4*4的矩阵(是)
-
将二维矩阵变形为一维向量(是)
-
将高次方程模型转换为低次方程模型(是)
4)说出以下编码格式属于哪种预处理方式(独热)
减肥:[1, 0, 0, 0, 0] 增重:[0, 1, 0, 0, 0] 瘦身:[0, 0, 1, 0, 0] 减脂:[0, 0, 0, 1, 0] 塑形:[0, 0, 0, 0, 1]
5)说出以下数据处理属于哪种预处理方式(二值化)
原始数据: [[0, 150, 200], [1, 180, 223], [2, 190, 255]] 转换后的数据: [[0, 0, 255], [0, 0, 255], [0, 0, 255]]