强化学习嵌入Transformer(代码实践)

本文介绍了如何在强化学习任务中使用Transformer的Encoder部分,特别是与PPO算法结合,用于策略网络。它解释了为何强化学习中通常不需完整Transformer,强调了Encoder在处理变长输入和序列依赖中的作用。作者还提供了PPO网络的实现代码,尽管提到代码无法正常学习策略,但展示了理论概念和技术细节。
摘要由CSDN通过智能技术生成

这里写目录标题

ChatGPT的答案

# 定义Transformer模块
class Transformer(nn.Module):
    def __init__(self, input_dim, hidden_dim, num_heads, num_layers):
        super(Transformer, self).__init__()
        self.encoder_layer = nn.TransformerEncoderLayer(d_model=input_dim, nhead=num_heads)
        self.transformer_encoder = nn.TransformerEncoder(self.encoder_layer, num_layers=num_layers)
        self.linear = nn.Linear(input_dim, hidden_dim)

    def forward(self, x):
        x = self.transformer_encoder(x)
        x = self.linear(x)
        return x

# 定义策略网络
class PolicyNetwork(nn.Module):
    def __init__(self, input_dim, output_dim, hidden_dim, num_heads, num_layers):
        super(PolicyNetwork, self).__init__()
        self.transformer = Transformer(input_dim, hidden_dim, num_heads, num_layers)
        self.fc = nn.Linear(hidden_dim, output_dim)

    def forward(self, x):
        x = self.transformer(x)
        x = F.softmax(self.fc(x), dim=-1)
        return x

问:为什么只有Encoder 没有decoder?
在强化学习任务中,特别是在策略梯度方法中,通常不需要一个完整的Transformer模型,包括Encoder和Decoder。这是因为在这些任务中,我们通常只需要一个从状态到动作的映射,而不需要生成序列。

因此,我们可以只使用Transformer的Encoder部分,将状态作为输入,经过编码后得到一个表示状态的向量,然后将这个向量传递给策略网络(或者Critic网络)来进行动作选择或值函数估计。

使用Transformer的Encoder部分可以有效地处理状态的变长输入,并且具有对序列建模的能力,这在处理许多强化学习任务中是非常有用的。

因此,在PPO算法中,我们只需使用Transformer的Encoder部分,而不需要Decoder部分。在强化学习中,尤其是在处理具有复杂状态和动作空间的任务时,能够捕获状态序列间的依赖关系对于预测未来奖励和决策至关重要。Transformer通过其自注意力机制,能够有效地处理这种序列依赖,从而提升策略性能。

GPT4.0

# time: 2024/3/1 21:31
# author: YanJP
import gym
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
from torch.distributions import Categorical
from torch.nn import TransformerEncoder, TransformerEncoderLayer
from torch.utils.data.sampler import BatchSampler, SubsetRandomSampler


# Transformer特征提取器
class TransformerFeatureExtractor(nn.Module):
    def __init__(self, input_dim, model_dim, num_heads, num_layers, dropout=0.1):
        super(TransformerFeatureExtractor, self).__init__()
        self.model_dim = model_dim
        encoder_layers = TransformerEncoderLayer(d_model=model_dim, nhead=num_heads, dropout=dropout)
        self.transformer_encoder = TransformerEncoder(encoder_layer=encoder_layers, num_layers=num_layers)
        self.input_projection = nn.Linear(input_dim, model_dim)

    def forward(self, x):
        x = self.input_projection(x)
        # 添加一个序列长度的维度,假设x的原始形状为(batch, model_dim)
        x = x.unsqueeze(0)  # 现在x的形状变为(1, batch, model_dim)
        output = self.transformer_encoder(x)
        return output.squeeze(0)  # 移除序列长度的维度,恢复到(batch, model_dim)


# PPO网络定义
class PPONetwork(nn.Module):
    def __init__(self, state_dim, action_dim, model_dim=64, num_heads=4, num_layers=4):
        super(PPONetwork, self).__init__()
        self.feature_extractor = TransformerFeatureExtractor(input_dim=state_dim, model_dim=model_dim,
                                                             num_heads=num_heads, num_layers=num_layers)
        self.policy_head = nn.Linear(model_dim, action_dim)
        self.value_head = nn.Linear(model_dim, 1)

    def forward(self, state):
        features = self.feature_extractor(state)
        # features = features[:, -1, :]  # 使用最后一个时间步的特征
        action_probs = torch.softmax(self.policy_head(features), dim=-1)
        state_values = self.value_head(features)
        return action_probs, state_values


# PPO Agent
class PPOAgent:
    def __init__(self, env):
        self.env = env
        self.state_dim = env.observation_space.shape[0]
        self.action_dim = env.action_space.n
        self.network = PPONetwork(self.state_dim, self.action_dim)
        self.optimizer = optim.Adam(self.network.parameters(), lr=2.5e-4)
        self.gamma = 0.99
        self.lamda = 0.95
        self.eps_clip = 0.2
        self.K_epoch = 4
        self.buffer_capacity = 1000
        self.batch_size = 64
        self.buffer = {'states': [], 'actions': [], 'log_probs': [], 'rewards': [], 'is_terminals': []}

    def select_action(self, state):
        state = torch.FloatTensor(state).unsqueeze(0)
        with torch.no_grad():
            action_probs, _ = self.network(state)
        dist = Categorical(action_probs)
        action = dist.sample()
        return action.item(), dist.log_prob(action)

    def put_data(self, transition):
        self.buffer['states'].append(transition[0])
        self.buffer['actions'].append(transition[1])
        self.buffer['log_probs'].append(transition[2])
        self.buffer['rewards'].append(transition[3])
        self.buffer['is_terminals'].append(transition[4])

    def train_net(self):
        R = 0
        discounted_rewards = []
        for reward, is_terminal in zip(reversed(self.buffer['rewards']), reversed(self.buffer['is_terminals'])):
            if is_terminal:
                R = 0
            R = reward + (self.gamma * R)
            discounted_rewards.insert(0, R)

        discounted_rewards = torch.tensor(discounted_rewards, dtype=torch.float32)
        old_states = torch.tensor(np.array(self.buffer['states']), dtype=torch.float32)
        old_actions = torch.tensor(self.buffer['actions']).view(-1, 1)
        old_log_probs = torch.tensor(self.buffer['log_probs']).view(-1, 1)

        # Normalize the rewards
        discounted_rewards = (discounted_rewards - discounted_rewards.mean()) / (discounted_rewards.std() + 1e-5)

        for _ in range(self.K_epoch):
            for index in BatchSampler(SubsetRandomSampler(range(len(self.buffer['states']))), self.batch_size, False):
                # Extract batches
                state_sample = old_states[index]
                action_sample = old_actions[index]
                old_log_probs_sample = old_log_probs[index]
                returns_sample = discounted_rewards[index].view(-1, 1)

                # Get current policies
                action_probs, state_values = self.network(state_sample)
                dist = Categorical(action_probs)
                entropy = dist.entropy().mean()
                new_log_probs = dist.log_prob(action_sample.squeeze(-1))

                # Calculating the ratio (pi_theta / pi_theta__old):
                ratios = torch.exp(new_log_probs - old_log_probs_sample.detach())

                # Calculating Surrogate Loss:
                advantages = returns_sample - state_values.detach()
                surr1 = ratios * advantages
                surr2 = torch.clamp(ratios, 1 - self.eps_clip, 1 + self.eps_clip) * advantages
                loss = -torch.min(surr1, surr2) + 0.5 * (state_values - returns_sample).pow(2) - 0.01 * entropy

                # take gradient step
                self.optimizer.zero_grad()
                loss.mean().backward()
                self.optimizer.step()
        self.buffer = {'states': [], 'actions': [], 'log_probs': [], 'rewards': [], 'is_terminals': []}

    def train(self, max_episodes):
        for episode in range(max_episodes):
            state = self.env.reset()
            done = False
            rewards=0
            while not done:
                action, log_prob = self.select_action(state)
                next_state, reward, done, _ = self.env.step(action)
                rewards+=reward
                self.put_data((state, action, log_prob, reward, done))
                state = next_state

                if done:
                    self.train_net()
                    if episode % 5 == 0:
                        print("eposide:", episode, '\t reward:', rewards)



# 主函数
def main():
    env = gym.make('CartPole-v1')
    agent = PPOAgent(env)
    max_episodes = 300
    agent.train(max_episodes)


if __name__ == "__main__":
    main()

注意:代码能跑,但是不能正常学习到策略!!!!!!!!!!!!!!!!!!!!!!!!!!!!

  • 6
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
抱歉,我是一名语言模型,无法提供完整的代码。但是,以下是一个可能的示例,用于将Transformer强化学习结合起来: ```python import torch import torch.nn as nn import torch.optim as optim import numpy as np from transformer import Transformer from replay_buffer import ReplayBuffer class Agent: def __init__(self, state_dim, action_dim, max_action): self.state_dim = state_dim self.action_dim = action_dim self.max_action = max_action self.actor = Transformer(state_dim, action_dim) self.critic = Transformer(state_dim, 1) self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=0.001) self.critic_optimizer = optim.Adam(self.critic.parameters(), lr=0.001) self.replay_buffer = ReplayBuffer() def select_action(self, state): state = torch.tensor(state, dtype=torch.float32).unsqueeze(0) action = self.actor(state) action = action.detach().numpy()[0] return action def train(self, batch_size=32, gamma=0.99, tau=0.005): state_batch, action_batch, reward_batch, next_state_batch, done_batch = self.replay_buffer.sample(batch_size) state_batch = torch.tensor(state_batch, dtype=torch.float32) action_batch = torch.tensor(action_batch, dtype=torch.float32) reward_batch = torch.tensor(reward_batch, dtype=torch.float32) next_state_batch = torch.tensor(next_state_batch, dtype=torch.float32) done_batch = torch.tensor(done_batch, dtype=torch.float32) with torch.no_grad(): next_action_batch = self.actor(next_state_batch) q_next = self.critic(torch.cat((next_state_batch, next_action_batch), dim=1)) q_target = reward_batch + (1 - done_batch) * gamma * q_next q_value = self.critic(torch.cat((state_batch, action_batch), dim=1)) critic_loss = nn.MSELoss(q_value, q_target) self.critic_optimizer.zero_grad() critic_loss.backward() self.critic_optimizer.step() actor_loss = -self.critic(torch.cat((state_batch, self.actor(state_batch)), dim=1)).mean() self.actor_optimizer.zero_grad() actor_loss.backward() self.actor_optimizer.step() for param, target_param in zip(self.actor.parameters(), self.target_actor.parameters()): target_param.data.copy_(tau * param.data + (1 - tau) * target_param.data) for param, target_param in zip(self.critic.parameters(), self.target_critic.parameters()): target_param.data.copy_(tau * param.data + (1 - tau) * target_param.data) def update_replay_buffer(self, state, action, reward, next_state, done): self.replay_buffer.add(state, action, reward, next_state, done) ``` 这里的 `Transformer` 是一个PyTorch类,用于实现Transformer模型,而 `ReplayBuffer` 是一个用于存储经验回放的类。在 `Agent` 类中,我们定义了用于选择动作和训练模型的方法,并且在训练过程中使用了批量更新和目标网络来提高模型的稳定性。在 `update_replay_buffer` 方法中,我们将每个步骤的经验添加到回放缓冲区中,以便在以后的训练中使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值