OFDM系统接收机全流程

接收信号模型

接收到的时域OFDM信号可以表示为:
r ( t ) = h ( t ) ∗ s ( t ) + n ( t ) r(t) = h(t) * s(t) + n(t) r(t)=h(t)s(t)+n(t)
其中:

  • s ( t ) s(t) s(t) 是发送的OFDM时域信号,

  • h ( t ) h(t) h(t) 是信道冲激响应,

  • n ( t ) n(t) n(t) 是加性高斯白噪声(AWGN),

  • ∗ * 表示卷积运算。
    在这里插入图片描述

  • IQ调制允许在单边带传输中复用I路和Q路信号,避免频谱浪费。结合OFDM的子载波正交性,可最大化频谱利用率。

  • IQ调制的正交性配合OFDM的子载波正交性,可有效抵抗多径干扰和频率选择性衰落。

OFDM在基带处理阶段生成复数信号,而IQ调制负责将这个复数信号转换为实射频信号进行传输。


一、采样判决

在这里插入图片描述

1. 接收信号的复数表示

在无线通信中,接收到的射频信号是一个实信号,可以表示为:
r RF ( t ) = Re { s ( t ) ⋅ e j 2 π f c t } r_{\text{RF}}(t) = \text{Re}\{s(t) \cdot e^{j 2\pi f_c t}\} rRF(t)=Re{s(t)ej2πfct}
其中:

  • s ( t ) s(t) s(t) 是基带复数信号(包含发送的OFDM符号信息),
  • f c f_c fc 是载波频率,
  • Re { ⋅ } \text{Re}\{\cdot\} Re{} 表示取实部。

为了恢复基带信号 s ( t ) s(t) s(t),接收端需要通过下变频和采样将射频信号搬移到基带。


2. 下变频:生成 I 路和 Q 路信号

下变频的目的是将射频信号从载波频率 f c f_c fc 搬移到基带(即零频附近)。这一过程通过正交解调实现,生成两路信号:I 路(In-phase)Q 路(Quadrature)

(1) 本地振荡器生成正交载波

接收端使用两个本地振荡器(LO),分别生成:

  • 同相载波: cos ⁡ ( 2 π f c t ) \cos(2\pi f_c t) cos(2πfct)
  • 正交载波: − sin ⁡ ( 2 π f c t ) -\sin(2\pi f_c t) sin(2πfct)
(2) 混频

将接收到的射频信号 r RF ( t ) r_{\text{RF}}(t) rRF(t) 分别与同相载波和正交载波相乘:

  • I 路信号
    r I ( t ) = r RF ( t ) ⋅ cos ⁡ ( 2 π f c t ) r_I(t) = r_{\text{RF}}(t) \cdot \cos(2\pi f_c t) rI(t)=rRF(t)cos(2πfct)
  • Q 路信号
    r Q ( t ) = r RF ( t ) ⋅ ( − sin ⁡ ( 2 π f c t ) ) r_Q(t) = r_{\text{RF}}(t) \cdot (-\sin(2\pi f_c t)) rQ(t)=rRF(t)(sin(2πfct))
(3) 低通滤波

混频后的信号包含高频分量( 2 f c 2f_c 2fc 附近)和基带分量。通过低通滤波器(LPF)滤除高频分量,保留基带信号:

  • I 路基带信号
    r I LPF ( t ) = LPF { r I ( t ) } r_I^{\text{LPF}}(t) = \text{LPF}\{r_I(t)\} rILPF(t)=LPF{rI(t)}
  • Q 路基带信号
    r Q LPF ( t ) = LPF { r Q ( t ) } r_Q^{\text{LPF}}(t) = \text{LPF}\{r_Q(t)\} rQLPF(t)=LPF{rQ(t)}

经过低通滤波后,I 路和 Q 路信号分别对应基带信号的实部和虚部。


3. 采样:得到复数信号

对 I 路和 Q 路基带信号进行采样,采样间隔为 T s = T N T_s = \frac{T}{N} Ts=NT,其中 T T T 是OFDM符号周期, N N N 是子载波数量。采样后的信号为:

  • I 路采样信号
    r I [ n ] = r I LPF ( n T s ) r_I[n] = r_I^{\text{LPF}}(nT_s) rI[n]=rILPF(nTs)
  • Q 路采样信号
    r Q [ n ] = r Q LPF ( n T s ) r_Q[n] = r_Q^{\text{LPF}}(nT_s) rQ[n]=rQLPF(nTs)

将 I 路和 Q 路采样信号组合成复数信号:
r [ n ] = r I [ n ] + j ⋅ r Q [ n ] r[n] = r_I[n] + j \cdot r_Q[n] r[n]=rI[n]+jrQ[n]
其中:

  • r I [ n ] r_I[n] rI[n] 是实部(I 路信号),
  • r Q [ n ] r_Q[n] rQ[n] 是虚部(Q 路信号),
  • j j j 是虚数单位。

4. 为什么需要两路信号?

两路信号(I 路和 Q 路)的存在是为了完整地恢复基带信号的幅度和相位信息。原因如下:

  1. 复数信号的实部和虚部

    • 基带信号 s ( t ) s(t) s(t) 是复数信号,包含实部和虚部。
    • 通过 I 路和 Q 路信号,可以分别恢复实部和虚部。
  2. 正交性

    • I 路和 Q 路信号是通过正交载波( cos ⁡ \cos cos − sin ⁡ -\sin sin)解调得到的。
    • 正交性保证了 I 路和 Q 路信号互不干扰,能够独立恢复。
  3. 幅度和相位信息

    • 复数信号的幅度和相位可以通过 I 路和 Q 路信号计算:
      幅度 = r I [ n ] 2 + r Q [ n ] 2 \text{幅度} = \sqrt{r_I[n]^2 + r_Q[n]^2} 幅度=rI[n]2+rQ[n]2
      相位 = arctan ⁡ ( r Q [ n ] r I [ n ] ) \text{相位} = \arctan\left(\frac{r_Q[n]}{r_I[n]}\right) 相位=arctan(rI[n]rQ[n])

5. 判决过程

在QPSK解调中,判决是基于复数信号的实部和虚部进行的:

  1. 对每个采样点 r [ n ] = r I [ n ] + j ⋅ r Q [ n ] r[n] = r_I[n] + j \cdot r_Q[n] r[n]=rI[n]+jrQ[n],判断实部和虚部的符号:
    • 如果 r I [ n ] > 0 r_I[n] > 0 rI[n]>0,判决为 0;否则判决为 1
    • 如果 r Q [ n ] > 0 r_Q[n] > 0 rQ[n]>0,判决为 0;否则判决为 1
  2. 将实部和虚部的判决结果组合成一个比特对(例如 00011110)。

总结
接收端通过正交解调生成 I 路和 Q 路信号,分别对应复数信号的实部和虚部。这两路信号经过低通滤波和采样后,组合成复数信号 r [ n ] r[n] r[n]。通过判决实部和虚部的符号,可以恢复发送的比特流。两路信号的存在确保了复数信号的幅度和相位信息能够被完整恢复。
在OFDM系统中,接收机从接收到的OFDM符号中恢复比特流的过程可以分为以下几个步骤。我们以QPSK调制为例,使用公式详细描述这一过程。


二. 去除循环前缀(CP)

接收端去除循环前缀,保留有效的OFDM符号部分:
r noCP [ n ] = r [ n + N CP ] , n = 0 , 1 , … , N − 1 r_{\text{noCP}}[n] = r[n + N_{\text{CP}}], \quad n = 0, 1, \dots, N-1 rnoCP[n]=r[n+NCP],n=0,1,,N1
其中 N CP N_{\text{CP}} NCP 是循环前缀的长度。


三. FFT 转换到频域

对去除CP后的信号进行FFT,将时域信号转换到频域:
R [ k ] = ∑ n = 0 N − 1 r noCP [ n ] ⋅ e − j 2 π k n N , k = 0 , 1 , … , N − 1 R[k] = \sum_{n=0}^{N-1} r_{\text{noCP}}[n] \cdot e^{-j \frac{2\pi kn}{N}}, \quad k = 0, 1, \dots, N-1 R[k]=n=0N1rnoCP[n]ejN2πkn,k=0,1,,N1
其中 R [ k ] R[k] R[k] 是频域接收信号。


四. 信道估计与均衡

假设信道频率响应为 H [ k ] H[k] H[k],接收端通过导频或训练序列估计 H [ k ] H[k] H[k],然后对频域信号进行均衡:
S ^ [ k ] = R [ k ] H [ k ] \hat{S}[k] = \frac{R[k]}{H[k]} S^[k]=H[k]R[k]
其中 S ^ [ k ] \hat{S}[k] S^[k] 是均衡后的频域符号。


五. QPSK 解调

QPSK 调制的符号映射规则为:

  • 比特对 00 映射为 + 1 2 + j ⋅ + 1 2 +\frac{1}{\sqrt{2}} + j \cdot +\frac{1}{\sqrt{2}} +2 1+j+2 1
  • 比特对 01 映射为 − 1 2 + j ⋅ + 1 2 -\frac{1}{\sqrt{2}} + j \cdot +\frac{1}{\sqrt{2}} 2 1+j+2 1
  • 比特对 11 映射为 − 1 2 + j ⋅ − 1 2 -\frac{1}{\sqrt{2}} + j \cdot -\frac{1}{\sqrt{2}} 2 1+j2 1
  • 比特对 10 映射为 + 1 2 + j ⋅ − 1 2 +\frac{1}{\sqrt{2}} + j \cdot -\frac{1}{\sqrt{2}} +2 1+j2 1

对均衡后的符号 S ^ [ k ] \hat{S}[k] S^[k] 进行解调:

  • 计算符号的实部和虚部:
    S ^ I [ k ] = Re { S ^ [ k ] } , S ^ Q [ k ] = Im { S ^ [ k ] } \hat{S}_I[k] = \text{Re}\{\hat{S}[k]\}, \quad \hat{S}_Q[k] = \text{Im}\{\hat{S}[k]\} S^I[k]=Re{S^[k]},S^Q[k]=Im{S^[k]}
  • 根据实部和虚部的符号判断比特对:
    bit 1 = sign ( S ^ I [ k ] ) , bit 2 = sign ( S ^ Q [ k ] ) \text{bit}_1 = \text{sign}(\hat{S}_I[k]), \quad \text{bit}_2 = \text{sign}(\hat{S}_Q[k]) bit1=sign(S^I[k]),bit2=sign(S^Q[k])
    其中 sign ( x ) \text{sign}(x) sign(x) 是符号函数, x > 0 x > 0 x>0 时输出 0,否则输出 1

六. 恢复比特流

将所有子载波上的比特对按顺序组合,恢复出原始的比特流:
bitstream = [ bit 1 [ 0 ] , bit 2 [ 0 ] , bit 1 [ 1 ] , bit 2 [ 1 ] , … , bit 1 [ N − 1 ] , bit 2 [ N − 1 ] ] \text{bitstream} = [\text{bit}_1[0], \text{bit}_2[0], \text{bit}_1[1], \text{bit}_2[1], \dots, \text{bit}_1[N-1], \text{bit}_2[N-1]] bitstream=[bit1[0],bit2[0],bit1[1],bit2[1],,bit1[N1],bit2[N1]]


总结

接收机从OFDM符号中恢复比特流的过程如下:

  1. 对接收信号进行时域采样,得到复数信号 r [ n ] r[n] r[n]
  2. 去除循环前缀,得到有效OFDM符号 r noCP [ n ] r_{\text{noCP}}[n] rnoCP[n]
  3. r noCP [ n ] r_{\text{noCP}}[n] rnoCP[n] 进行FFT,转换到频域 R [ k ] R[k] R[k]
  4. 通过信道估计与均衡,得到均衡后的符号 S ^ [ k ] \hat{S}[k] S^[k]
  5. S ^ [ k ] \hat{S}[k] S^[k] 进行QPSK解调,恢复比特对。
  6. 将所有比特对组合,得到最终的比特流。

这一过程通过复数信号处理和频域操作,高效地恢复了发送的比特流信息。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值