目录标题
接收信号模型
接收到的时域OFDM信号可以表示为:
r
(
t
)
=
h
(
t
)
∗
s
(
t
)
+
n
(
t
)
r(t) = h(t) * s(t) + n(t)
r(t)=h(t)∗s(t)+n(t)
其中:
-
s ( t ) s(t) s(t) 是发送的OFDM时域信号,
-
h ( t ) h(t) h(t) 是信道冲激响应,
-
n ( t ) n(t) n(t) 是加性高斯白噪声(AWGN),
-
∗ * ∗ 表示卷积运算。
-
IQ调制允许在单边带传输中复用I路和Q路信号,避免频谱浪费。结合OFDM的子载波正交性,可最大化频谱利用率。
-
IQ调制的正交性配合OFDM的子载波正交性,可有效抵抗多径干扰和频率选择性衰落。
OFDM在基带处理阶段生成复数信号,而IQ调制负责将这个复数信号转换为实射频信号进行传输。
一、采样判决
1. 接收信号的复数表示
在无线通信中,接收到的射频信号是一个实信号,可以表示为:
r
RF
(
t
)
=
Re
{
s
(
t
)
⋅
e
j
2
π
f
c
t
}
r_{\text{RF}}(t) = \text{Re}\{s(t) \cdot e^{j 2\pi f_c t}\}
rRF(t)=Re{s(t)⋅ej2πfct}
其中:
- s ( t ) s(t) s(t) 是基带复数信号(包含发送的OFDM符号信息),
- f c f_c fc 是载波频率,
- Re { ⋅ } \text{Re}\{\cdot\} Re{⋅} 表示取实部。
为了恢复基带信号 s ( t ) s(t) s(t),接收端需要通过下变频和采样将射频信号搬移到基带。
2. 下变频:生成 I 路和 Q 路信号
下变频的目的是将射频信号从载波频率 f c f_c fc 搬移到基带(即零频附近)。这一过程通过正交解调实现,生成两路信号:I 路(In-phase) 和 Q 路(Quadrature)。
(1) 本地振荡器生成正交载波
接收端使用两个本地振荡器(LO),分别生成:
- 同相载波: cos ( 2 π f c t ) \cos(2\pi f_c t) cos(2πfct)
- 正交载波: − sin ( 2 π f c t ) -\sin(2\pi f_c t) −sin(2πfct)
(2) 混频
将接收到的射频信号 r RF ( t ) r_{\text{RF}}(t) rRF(t) 分别与同相载波和正交载波相乘:
- I 路信号:
r I ( t ) = r RF ( t ) ⋅ cos ( 2 π f c t ) r_I(t) = r_{\text{RF}}(t) \cdot \cos(2\pi f_c t) rI(t)=rRF(t)⋅cos(2πfct) - Q 路信号:
r Q ( t ) = r RF ( t ) ⋅ ( − sin ( 2 π f c t ) ) r_Q(t) = r_{\text{RF}}(t) \cdot (-\sin(2\pi f_c t)) rQ(t)=rRF(t)⋅(−sin(2πfct))
(3) 低通滤波
混频后的信号包含高频分量( 2 f c 2f_c 2fc 附近)和基带分量。通过低通滤波器(LPF)滤除高频分量,保留基带信号:
- I 路基带信号:
r I LPF ( t ) = LPF { r I ( t ) } r_I^{\text{LPF}}(t) = \text{LPF}\{r_I(t)\} rILPF(t)=LPF{rI(t)} - Q 路基带信号:
r Q LPF ( t ) = LPF { r Q ( t ) } r_Q^{\text{LPF}}(t) = \text{LPF}\{r_Q(t)\} rQLPF(t)=LPF{rQ(t)}
经过低通滤波后,I 路和 Q 路信号分别对应基带信号的实部和虚部。
3. 采样:得到复数信号
对 I 路和 Q 路基带信号进行采样,采样间隔为 T s = T N T_s = \frac{T}{N} Ts=NT,其中 T T T 是OFDM符号周期, N N N 是子载波数量。采样后的信号为:
- I 路采样信号:
r I [ n ] = r I LPF ( n T s ) r_I[n] = r_I^{\text{LPF}}(nT_s) rI[n]=rILPF(nTs) - Q 路采样信号:
r Q [ n ] = r Q LPF ( n T s ) r_Q[n] = r_Q^{\text{LPF}}(nT_s) rQ[n]=rQLPF(nTs)
将 I 路和 Q 路采样信号组合成复数信号:
r
[
n
]
=
r
I
[
n
]
+
j
⋅
r
Q
[
n
]
r[n] = r_I[n] + j \cdot r_Q[n]
r[n]=rI[n]+j⋅rQ[n]
其中:
- r I [ n ] r_I[n] rI[n] 是实部(I 路信号),
- r Q [ n ] r_Q[n] rQ[n] 是虚部(Q 路信号),
- j j j 是虚数单位。
4. 为什么需要两路信号?
两路信号(I 路和 Q 路)的存在是为了完整地恢复基带信号的幅度和相位信息。原因如下:
-
复数信号的实部和虚部:
- 基带信号 s ( t ) s(t) s(t) 是复数信号,包含实部和虚部。
- 通过 I 路和 Q 路信号,可以分别恢复实部和虚部。
-
正交性:
- I 路和 Q 路信号是通过正交载波( cos \cos cos 和 − sin -\sin −sin)解调得到的。
- 正交性保证了 I 路和 Q 路信号互不干扰,能够独立恢复。
-
幅度和相位信息:
- 复数信号的幅度和相位可以通过 I 路和 Q 路信号计算:
幅度 = r I [ n ] 2 + r Q [ n ] 2 \text{幅度} = \sqrt{r_I[n]^2 + r_Q[n]^2} 幅度=rI[n]2+rQ[n]2
相位 = arctan ( r Q [ n ] r I [ n ] ) \text{相位} = \arctan\left(\frac{r_Q[n]}{r_I[n]}\right) 相位=arctan(rI[n]rQ[n])
- 复数信号的幅度和相位可以通过 I 路和 Q 路信号计算:
5. 判决过程
在QPSK解调中,判决是基于复数信号的实部和虚部进行的:
- 对每个采样点
r
[
n
]
=
r
I
[
n
]
+
j
⋅
r
Q
[
n
]
r[n] = r_I[n] + j \cdot r_Q[n]
r[n]=rI[n]+j⋅rQ[n],判断实部和虚部的符号:
- 如果
r
I
[
n
]
>
0
r_I[n] > 0
rI[n]>0,判决为
0
;否则判决为1
。 - 如果
r
Q
[
n
]
>
0
r_Q[n] > 0
rQ[n]>0,判决为
0
;否则判决为1
。
- 如果
r
I
[
n
]
>
0
r_I[n] > 0
rI[n]>0,判决为
- 将实部和虚部的判决结果组合成一个比特对(例如
00
、01
、11
、10
)。
总结
接收端通过正交解调生成 I 路和 Q 路信号,分别对应复数信号的实部和虚部。这两路信号经过低通滤波和采样后,组合成复数信号
r
[
n
]
r[n]
r[n]。通过判决实部和虚部的符号,可以恢复发送的比特流。两路信号的存在确保了复数信号的幅度和相位信息能够被完整恢复。
在OFDM系统中,接收机从接收到的OFDM符号中恢复比特流的过程可以分为以下几个步骤。我们以QPSK调制为例,使用公式详细描述这一过程。
二. 去除循环前缀(CP)
接收端去除循环前缀,保留有效的OFDM符号部分:
r
noCP
[
n
]
=
r
[
n
+
N
CP
]
,
n
=
0
,
1
,
…
,
N
−
1
r_{\text{noCP}}[n] = r[n + N_{\text{CP}}], \quad n = 0, 1, \dots, N-1
rnoCP[n]=r[n+NCP],n=0,1,…,N−1
其中
N
CP
N_{\text{CP}}
NCP 是循环前缀的长度。
三. FFT 转换到频域
对去除CP后的信号进行FFT,将时域信号转换到频域:
R
[
k
]
=
∑
n
=
0
N
−
1
r
noCP
[
n
]
⋅
e
−
j
2
π
k
n
N
,
k
=
0
,
1
,
…
,
N
−
1
R[k] = \sum_{n=0}^{N-1} r_{\text{noCP}}[n] \cdot e^{-j \frac{2\pi kn}{N}}, \quad k = 0, 1, \dots, N-1
R[k]=n=0∑N−1rnoCP[n]⋅e−jN2πkn,k=0,1,…,N−1
其中
R
[
k
]
R[k]
R[k] 是频域接收信号。
四. 信道估计与均衡
假设信道频率响应为
H
[
k
]
H[k]
H[k],接收端通过导频或训练序列估计
H
[
k
]
H[k]
H[k],然后对频域信号进行均衡:
S
^
[
k
]
=
R
[
k
]
H
[
k
]
\hat{S}[k] = \frac{R[k]}{H[k]}
S^[k]=H[k]R[k]
其中
S
^
[
k
]
\hat{S}[k]
S^[k] 是均衡后的频域符号。
五. QPSK 解调
QPSK 调制的符号映射规则为:
- 比特对
00
映射为 + 1 2 + j ⋅ + 1 2 +\frac{1}{\sqrt{2}} + j \cdot +\frac{1}{\sqrt{2}} +21+j⋅+21 - 比特对
01
映射为 − 1 2 + j ⋅ + 1 2 -\frac{1}{\sqrt{2}} + j \cdot +\frac{1}{\sqrt{2}} −21+j⋅+21 - 比特对
11
映射为 − 1 2 + j ⋅ − 1 2 -\frac{1}{\sqrt{2}} + j \cdot -\frac{1}{\sqrt{2}} −21+j⋅−21 - 比特对
10
映射为 + 1 2 + j ⋅ − 1 2 +\frac{1}{\sqrt{2}} + j \cdot -\frac{1}{\sqrt{2}} +21+j⋅−21
对均衡后的符号 S ^ [ k ] \hat{S}[k] S^[k] 进行解调:
- 计算符号的实部和虚部:
S ^ I [ k ] = Re { S ^ [ k ] } , S ^ Q [ k ] = Im { S ^ [ k ] } \hat{S}_I[k] = \text{Re}\{\hat{S}[k]\}, \quad \hat{S}_Q[k] = \text{Im}\{\hat{S}[k]\} S^I[k]=Re{S^[k]},S^Q[k]=Im{S^[k]} - 根据实部和虚部的符号判断比特对:
bit 1 = sign ( S ^ I [ k ] ) , bit 2 = sign ( S ^ Q [ k ] ) \text{bit}_1 = \text{sign}(\hat{S}_I[k]), \quad \text{bit}_2 = \text{sign}(\hat{S}_Q[k]) bit1=sign(S^I[k]),bit2=sign(S^Q[k])
其中 sign ( x ) \text{sign}(x) sign(x) 是符号函数, x > 0 x > 0 x>0 时输出0
,否则输出1
。
六. 恢复比特流
将所有子载波上的比特对按顺序组合,恢复出原始的比特流:
bitstream
=
[
bit
1
[
0
]
,
bit
2
[
0
]
,
bit
1
[
1
]
,
bit
2
[
1
]
,
…
,
bit
1
[
N
−
1
]
,
bit
2
[
N
−
1
]
]
\text{bitstream} = [\text{bit}_1[0], \text{bit}_2[0], \text{bit}_1[1], \text{bit}_2[1], \dots, \text{bit}_1[N-1], \text{bit}_2[N-1]]
bitstream=[bit1[0],bit2[0],bit1[1],bit2[1],…,bit1[N−1],bit2[N−1]]
总结
接收机从OFDM符号中恢复比特流的过程如下:
- 对接收信号进行时域采样,得到复数信号 r [ n ] r[n] r[n]。
- 去除循环前缀,得到有效OFDM符号 r noCP [ n ] r_{\text{noCP}}[n] rnoCP[n]。
- 对 r noCP [ n ] r_{\text{noCP}}[n] rnoCP[n] 进行FFT,转换到频域 R [ k ] R[k] R[k]。
- 通过信道估计与均衡,得到均衡后的符号 S ^ [ k ] \hat{S}[k] S^[k]。
- 对 S ^ [ k ] \hat{S}[k] S^[k] 进行QPSK解调,恢复比特对。
- 将所有比特对组合,得到最终的比特流。
这一过程通过复数信号处理和频域操作,高效地恢复了发送的比特流信息。