数论第二节:最大公因数与辗转相除法证明

1、最大公因数定义

a 1 , . . . , a n a_1,...,a_n a1,...,an为n个整数(n≥2),若存在d,使得 d ∣ a i ( 1 ≤ i ≤ n ) d|a_i(1≤i≤n) dai(1in),则称d为 a 1 , . . . , a n a_1,...,a_n a1,...,an一个公因数。在 a 1 , . . . , a n a_1,...,a_n a1,...,an的所有公因数中最大的那个d,称为最大公因数。最大公因数记为 ( a 1 , . . . , a n ) (a_1,...,a_n) (a1,...,an)

2、最大公因数判别法

方法1:穷举法

列出所有公因数,并找到其中最大的一个。

方法2:整除法

列出所有公因数,若存在 d k d_k dk,使得 d i ∣ d k ( i ∈ { 1 , 2 , . . . , l } d_i|d_k(i∈\{1,2,...,l\} didk(i{1,2,...,l}恒成立,则 d k d_k dk为最大公因数。
证明:(反证法)
若存在 d x 、 d y ( d x < d y ) d_x、d_y(d_x<d_y) dxdydxdy,满足 d x ∣ ( a 1 , . . . , a n ) d_x|(a_1,...,a_n) dx(a1,...,an) d y ∣ ( a 1 , . . . , a n ) d_y|(a_1,...,a_n) dy(a1,...,an)。若 d x d_x dx不能整除 d y d_y dy,则必存在 d z = d x ∗ d y d_z=d_x*d_y dz=dxdy,使得 d z ∣ ( a 1 , . . . , a n ) d_z|(a_1,...,a_n) dz(a1,...,an),所以结论成立。

3、互质的定义

定义1: ( a 1 , a 2 , . . . , a n ) = 1 (a_1,a_2,...,a_n)=1 (a1,a2,...,an)=1,则称 a 1 , a 2 , . . . , a n a1,a_2,...,a_n a1,a2,...,an互质(互素)。
定义2(裴蜀定理推论): 存在 S 1 , S 2 , . . . , S n ∈ Z S_1,S_2,...,S_n∈Z S1,S2,...,SnZ,使得 S 1 ∗ a 1 + S 2 ∗ a 2 + . . . + S n ∗ a n = 1 S_1*a_1+S_2*a_2+...+S_n*a_n=1 S1a1+S2a2+...+Snan=1,,则称 a 1 , a 2 , . . . , a n a1,a_2,...,a_n a1,a2,...,an互质(互素)。
定义2证明:(证明思路:带余除法)
K = { S 1 ∗ a 1 + S 2 ∗ a 2 + . . . + S n ∗ a n ∣ S i ∈ Z } K=\{S_1*a_1+S_2*a_2+...+S_n*a_n|S_i∈Z\} K={S1a1+S2a2+...+SnanSiZ},且 k ′ = S 1 ′ ∗ a 1 + S 2 ′ ∗ a 2 + . . . + S n ′ ∗ a n = m i n { S 1 ∗ a 1 + S 2 ∗ a 2 + . . . + S n ∗ a n ∣ S i ∈ Z } k'=S_1'*a_1+S_2'*a_2+...+S_n'*a_n=min\{S_1*a_1+S_2*a_2+...+S_n*a_n|S_i∈Z\} k=S1a1+S2a2+...+Snan=min{S1a1+S2a2+...+SnanSiZ}
对于任意的 k ∈ K k∈K kK,都可以将k表示为如下:
k = S 1 ∗ a 1 + S 2 ∗ a 2 + . . . + S n ∗ a n = ( S 1 ′ ∗ a 1 + S 2 ′ ∗ a 2 + . . . + S n ′ ∗ a n ) ∗ q + r k=S_1*a_1+S_2*a_2+...+S_n*a_n=(S_1'*a_1+S_2'*a_2+...+S_n'*a_n)*q+r k=S1a1+S2a2+...+Snan=(S1a1+S2a2+...+Snan)q+r
显然,r=0 (证明见数论第一节习题2)
所以 k ′ ∣ ( a 1 , a 2 , . . . , a n ) k'|(a_1,a_2,...,a_n) k(a1,a2,...,an),因为 a 1 , a 2 , . . . , a n a_1,a_2,...,a_n a1,a2,...,an互质,所以k’=1,证毕。
注意:整体互素不等于两两互素,比如(2,4,7)=1而(2,4)=2,但是反过来成立。
参考链接

4、证:两两互素等于整体互素

方法1:方程证明

已知 a 1 , a 2 , . . . , a n a_1,a_2,...,a_n a1,a2,...,an两两互质,求 S 1 , S 2 , . . . , S n ∈ Z S_1,S_2,...,S_n∈Z S1,S2,...,SnZ,使得 S 1 ∗ a 1 + S 2 ∗ a 2 + . . . + S n ∗ a n = 1 S_1*a_1+S_2*a_2+...+S_n*a_n=1 S1a1+S2a2+...+Snan=1
( S 1 , S 2 ) = 1 、 ( S 1 , S 3 ) = 1 , . . . (S_1,S_2)=1、(S_1,S_3)=1,... (S1S2)=1(S1S3)=1...可列方程如下:

在这里插入图片描述
方程相乘,可以得到 x a 1 + y a 2 + . . . + z a n = 1 xa_1+ya_2+...+za_n=1 xa1+ya2+...+zan=1,即两两互素。

方法2:数学归纳法证明

思路较为简单,略。

5、相关定理

定理1
a 1 , . . . , a n a_1,...,a_n a1,...,an ∣ a 1 ∣ , ∣ a 2 ∣ , . . . , ∣ a n ∣ |a_1|,|a_2|,...,|a_n| a1,a2,...,an的公因数相同。
定理2
( a 1 , . . . , a n ) = ( ∣ a 1 ∣ , . . . , ∣ a n ∣ ) (a_1,...,a_n)=(|a_1|,...,|a_n|) (a1,...,an)=(a1,...,an)
定理3
若b为一个正整数,则
(1)0与b的公因数就是b的因数。
(2)b的因数就是0与b的公因数。
(3)(0,b)=b
推论: ( 0 , b ) = ∣ b ∣ (0,b)=|b| 0b=b

定理4(辗转相除法的理论基础):

证:a,b,c不全为0,且a=bq+c,则(a,b)=(b,c)
证明:
(1)设d∈Z,且 d ∣ a , d ∣ b d|a,d|b dadb
c = a − b ∗ p c=a-b*p c=abp,由除数的分配率可知 d ∣ c d|c dc
所以: d ∣ a , d ∣ b = > d ∣ c d|a,d|b=>d|c da,db=>dc
(2)设d∈Z,且 d ∣ b , d ∣ c d|b,d|c dbdc
a = b ∗ p + c a=b*p+c a=bp+c,由除数的分配率可知 d ∣ a d|a da
所以: d ∣ b , d ∣ c = > d ∣ a d|b,d|c=>d|a db,dc=>da
于是可以画图如下:
在这里插入图片描述
所以,可以容易的理解:(a,b)的公因数域与(b,c)的公因数域相同,所以(a,b)=(b,c)
定理5
若a,b不全为0,则:
(1)任意的m为正整数,则 ( a ∗ m , b ∗ m ) = ( a , b ) ∗ m (a*m,b*m)=(a,b)*m (am,bm)=(a,b)m
(2)若m是a,b的任意公因数, ( a / m , b / m ) = ( a , b ) / ∣ m ∣ (a/m,b/m)=(a,b)/|m| (a/m,b/m)=(a,b)/∣m
推论: = > ( a / ( a , b ) , b / ( a , b ) ) = 1 =>(a/(a,b),b/(a,b))=1 =>(a/(a,b),b/(a,b))=1

定理6(求n个数的最大公因数):

( a 1 , a 2 , . . . , a n ) = d n (a_1,a_2,...,a_n)=d_n (a1,a2,...,an)=dn d n d_n dn的计算方式如下:
( a 1 , a 2 ) = d 2 (a_1,a_2)=d_2 (a1,a2)=d2, ( d 2 , a 3 ) = d 3 (d_2,a_3)=d_3 (d2,a3)=d3,以此类推…, ( d n − 1 , a n ) = d n (d_{n-1},a_n)=d_n (dn1,an)=dn
证明:
公因数证明:
( d n − 1 , a n ) = d n (d_{n-1},a_n)=d_n (dn1,an)=dn,可知 d n ∣ a n d_n|a_n dnan d n ∣ d n − 1 d_n|d_{n-1} dndn1
( d n − 2 , a n − 1 ) = d n − 1 (d_{n-2},a_{n-1})=d_{n-1} (dn2,an1)=dn1,可知 d n − 1 ∣ a n − 1 d_{n-1}|a_{n-1} dn1an1 d n − 1 ∣ d n − 2 d_{n-1}|d_{n-2} dn1dn2

( a 1 , a 2 ) = d 2 (a_1,a_2)=d_2 (a1,a2)=d2,可知 d 2 ∣ a 1 d_2|a_1 d2a1 d 2 ∣ a 2 d_2|a_2 d2a2
然后,只需要证明 d n ∣ a 1 , d n ∣ a 2 , . . , d n ∣ a n d_n|a_1,d_n|a_2,..,d_n|a_n dna1,dna2,..,dnan,就可以证明 d n d_n dn为公因数。
由于 ( d n − 1 , a n ) = d n (d_{n-1},a_n)=d_n (dn1,an)=dn,且 ( d n − 2 , a n − 1 ) = d n − 1 (d_{n-2},a_{n-1})=d_{n-1} (dn2,an1)=dn1,可得 d n ∣ a n d_n|a_n dnan d n ∣ a n − 1 d_n|a_{n-1} dnan1(整除的传递性)
最大性证明:
假设d为 a 1 , a 2 , . . . , a n a_1,a_2,...,a_n a1,a2,...,an的任意公因数。
d ∣ a 1 , d ∣ a 2 = > d ∣ d 2 d|a_1,d|a_2=>d|d_2 da1,da2=>dd2
d ∣ d 2 , d ∣ a 3 = > d ∣ d 4 d|d_2,d|a_3=>d|d_4 dd2,da3=>dd4

d ∣ a n , d ∣ d n − 1 = > d ∣ d n d|a_n,d|d_{n-1}=>d|d_n dan,ddn1=>ddn
d ∣ d n d|d_n ddn可知 d n d_n dn是最大公因数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值