文章目录
1、最大公因数定义
设 a 1 , . . . , a n a_1,...,a_n a1,...,an为n个整数(n≥2),若存在d,使得 d ∣ a i ( 1 ≤ i ≤ n ) d|a_i(1≤i≤n) d∣ai(1≤i≤n),则称d为 a 1 , . . . , a n a_1,...,a_n a1,...,an的一个公因数。在 a 1 , . . . , a n a_1,...,a_n a1,...,an的所有公因数中最大的那个d,称为最大公因数。最大公因数记为 ( a 1 , . . . , a n ) (a_1,...,a_n) (a1,...,an)。
2、最大公因数判别法
方法1:穷举法
列出所有公因数,并找到其中最大的一个。
方法2:整除法
列出所有公因数,若存在
d
k
d_k
dk,使得
d
i
∣
d
k
(
i
∈
{
1
,
2
,
.
.
.
,
l
}
d_i|d_k(i∈\{1,2,...,l\}
di∣dk(i∈{1,2,...,l}恒成立,则
d
k
d_k
dk为最大公因数。
证明:(反证法)
若存在
d
x
、
d
y
(
d
x
<
d
y
)
d_x、d_y(d_x<d_y)
dx、dy(dx<dy),满足
d
x
∣
(
a
1
,
.
.
.
,
a
n
)
d_x|(a_1,...,a_n)
dx∣(a1,...,an)且
d
y
∣
(
a
1
,
.
.
.
,
a
n
)
d_y|(a_1,...,a_n)
dy∣(a1,...,an)。若
d
x
d_x
dx不能整除
d
y
d_y
dy,则必存在
d
z
=
d
x
∗
d
y
d_z=d_x*d_y
dz=dx∗dy,使得
d
z
∣
(
a
1
,
.
.
.
,
a
n
)
d_z|(a_1,...,a_n)
dz∣(a1,...,an),所以结论成立。
3、互质的定义
定义1: 若
(
a
1
,
a
2
,
.
.
.
,
a
n
)
=
1
(a_1,a_2,...,a_n)=1
(a1,a2,...,an)=1,则称
a
1
,
a
2
,
.
.
.
,
a
n
a1,a_2,...,a_n
a1,a2,...,an互质(互素)。
定义2(裴蜀定理推论): 存在
S
1
,
S
2
,
.
.
.
,
S
n
∈
Z
S_1,S_2,...,S_n∈Z
S1,S2,...,Sn∈Z,使得
S
1
∗
a
1
+
S
2
∗
a
2
+
.
.
.
+
S
n
∗
a
n
=
1
S_1*a_1+S_2*a_2+...+S_n*a_n=1
S1∗a1+S2∗a2+...+Sn∗an=1,,则称
a
1
,
a
2
,
.
.
.
,
a
n
a1,a_2,...,a_n
a1,a2,...,an互质(互素)。
定义2证明:(证明思路:带余除法)
设
K
=
{
S
1
∗
a
1
+
S
2
∗
a
2
+
.
.
.
+
S
n
∗
a
n
∣
S
i
∈
Z
}
K=\{S_1*a_1+S_2*a_2+...+S_n*a_n|S_i∈Z\}
K={S1∗a1+S2∗a2+...+Sn∗an∣Si∈Z},且
k
′
=
S
1
′
∗
a
1
+
S
2
′
∗
a
2
+
.
.
.
+
S
n
′
∗
a
n
=
m
i
n
{
S
1
∗
a
1
+
S
2
∗
a
2
+
.
.
.
+
S
n
∗
a
n
∣
S
i
∈
Z
}
k'=S_1'*a_1+S_2'*a_2+...+S_n'*a_n=min\{S_1*a_1+S_2*a_2+...+S_n*a_n|S_i∈Z\}
k′=S1′∗a1+S2′∗a2+...+Sn′∗an=min{S1∗a1+S2∗a2+...+Sn∗an∣Si∈Z}。
对于任意的
k
∈
K
k∈K
k∈K,都可以将k表示为如下:
k
=
S
1
∗
a
1
+
S
2
∗
a
2
+
.
.
.
+
S
n
∗
a
n
=
(
S
1
′
∗
a
1
+
S
2
′
∗
a
2
+
.
.
.
+
S
n
′
∗
a
n
)
∗
q
+
r
k=S_1*a_1+S_2*a_2+...+S_n*a_n=(S_1'*a_1+S_2'*a_2+...+S_n'*a_n)*q+r
k=S1∗a1+S2∗a2+...+Sn∗an=(S1′∗a1+S2′∗a2+...+Sn′∗an)∗q+r
显然,r=0 (证明见数论第一节习题2) 。
所以
k
′
∣
(
a
1
,
a
2
,
.
.
.
,
a
n
)
k'|(a_1,a_2,...,a_n)
k′∣(a1,a2,...,an),因为
a
1
,
a
2
,
.
.
.
,
a
n
a_1,a_2,...,a_n
a1,a2,...,an互质,所以k’=1,证毕。
注意:整体互素不等于两两互素,比如(2,4,7)=1而(2,4)=2,但是反过来成立。
参考链接
4、证:两两互素等于整体互素
方法1:方程证明
已知
a
1
,
a
2
,
.
.
.
,
a
n
a_1,a_2,...,a_n
a1,a2,...,an两两互质,求
S
1
,
S
2
,
.
.
.
,
S
n
∈
Z
S_1,S_2,...,S_n∈Z
S1,S2,...,Sn∈Z,使得
S
1
∗
a
1
+
S
2
∗
a
2
+
.
.
.
+
S
n
∗
a
n
=
1
S_1*a_1+S_2*a_2+...+S_n*a_n=1
S1∗a1+S2∗a2+...+Sn∗an=1。
由
(
S
1
,
S
2
)
=
1
、
(
S
1
,
S
3
)
=
1
,
.
.
.
(S_1,S_2)=1、(S_1,S_3)=1,...
(S1,S2)=1、(S1,S3)=1,...可列方程如下:
方程相乘,可以得到
x
a
1
+
y
a
2
+
.
.
.
+
z
a
n
=
1
xa_1+ya_2+...+za_n=1
xa1+ya2+...+zan=1,即两两互素。
方法2:数学归纳法证明
思路较为简单,略。
5、相关定理
定理1:
a
1
,
.
.
.
,
a
n
a_1,...,a_n
a1,...,an与
∣
a
1
∣
,
∣
a
2
∣
,
.
.
.
,
∣
a
n
∣
|a_1|,|a_2|,...,|a_n|
∣a1∣,∣a2∣,...,∣an∣的公因数相同。
定理2:
(
a
1
,
.
.
.
,
a
n
)
=
(
∣
a
1
∣
,
.
.
.
,
∣
a
n
∣
)
(a_1,...,a_n)=(|a_1|,...,|a_n|)
(a1,...,an)=(∣a1∣,...,∣an∣)
定理3:
若b为一个正整数,则
(1)0与b的公因数就是b的因数。
(2)b的因数就是0与b的公因数。
(3)(0,b)=b
推论:
(
0
,
b
)
=
∣
b
∣
(0,b)=|b|
(0,b)=∣b∣
定理4(辗转相除法的理论基础):
证:a,b,c不全为0,且a=bq+c,则(a,b)=(b,c)
证明:
(1)设d∈Z,且
d
∣
a
,
d
∣
b
d|a,d|b
d∣a,d∣b。
则
c
=
a
−
b
∗
p
c=a-b*p
c=a−b∗p,由除数的分配率可知
d
∣
c
d|c
d∣c。
所以:
d
∣
a
,
d
∣
b
=
>
d
∣
c
d|a,d|b=>d|c
d∣a,d∣b=>d∣c。
(2)设d∈Z,且
d
∣
b
,
d
∣
c
d|b,d|c
d∣b,d∣c。
则
a
=
b
∗
p
+
c
a=b*p+c
a=b∗p+c,由除数的分配率可知
d
∣
a
d|a
d∣a。
所以:
d
∣
b
,
d
∣
c
=
>
d
∣
a
d|b,d|c=>d|a
d∣b,d∣c=>d∣a。
于是可以画图如下:
所以,可以容易的理解:(a,b)的公因数域与(b,c)的公因数域相同,所以(a,b)=(b,c)。
定理5:
若a,b不全为0,则:
(1)任意的m为正整数,则
(
a
∗
m
,
b
∗
m
)
=
(
a
,
b
)
∗
m
(a*m,b*m)=(a,b)*m
(a∗m,b∗m)=(a,b)∗m
(2)若m是a,b的任意公因数,
(
a
/
m
,
b
/
m
)
=
(
a
,
b
)
/
∣
m
∣
(a/m,b/m)=(a,b)/|m|
(a/m,b/m)=(a,b)/∣m∣
推论:
=
>
(
a
/
(
a
,
b
)
,
b
/
(
a
,
b
)
)
=
1
=>(a/(a,b),b/(a,b))=1
=>(a/(a,b),b/(a,b))=1
定理6(求n个数的最大公因数):
(
a
1
,
a
2
,
.
.
.
,
a
n
)
=
d
n
(a_1,a_2,...,a_n)=d_n
(a1,a2,...,an)=dn,
d
n
d_n
dn的计算方式如下:
(
a
1
,
a
2
)
=
d
2
(a_1,a_2)=d_2
(a1,a2)=d2,
(
d
2
,
a
3
)
=
d
3
(d_2,a_3)=d_3
(d2,a3)=d3,以此类推…,
(
d
n
−
1
,
a
n
)
=
d
n
(d_{n-1},a_n)=d_n
(dn−1,an)=dn。
证明:
公因数证明:
由
(
d
n
−
1
,
a
n
)
=
d
n
(d_{n-1},a_n)=d_n
(dn−1,an)=dn,可知
d
n
∣
a
n
d_n|a_n
dn∣an,
d
n
∣
d
n
−
1
d_n|d_{n-1}
dn∣dn−1。
由
(
d
n
−
2
,
a
n
−
1
)
=
d
n
−
1
(d_{n-2},a_{n-1})=d_{n-1}
(dn−2,an−1)=dn−1,可知
d
n
−
1
∣
a
n
−
1
d_{n-1}|a_{n-1}
dn−1∣an−1,
d
n
−
1
∣
d
n
−
2
d_{n-1}|d_{n-2}
dn−1∣dn−2。
…
由
(
a
1
,
a
2
)
=
d
2
(a_1,a_2)=d_2
(a1,a2)=d2,可知
d
2
∣
a
1
d_2|a_1
d2∣a1,
d
2
∣
a
2
d_2|a_2
d2∣a2。
然后,只需要证明
d
n
∣
a
1
,
d
n
∣
a
2
,
.
.
,
d
n
∣
a
n
d_n|a_1,d_n|a_2,..,d_n|a_n
dn∣a1,dn∣a2,..,dn∣an,就可以证明
d
n
d_n
dn为公因数。
由于
(
d
n
−
1
,
a
n
)
=
d
n
(d_{n-1},a_n)=d_n
(dn−1,an)=dn,且
(
d
n
−
2
,
a
n
−
1
)
=
d
n
−
1
(d_{n-2},a_{n-1})=d_{n-1}
(dn−2,an−1)=dn−1,可得
d
n
∣
a
n
d_n|a_n
dn∣an、
d
n
∣
a
n
−
1
d_n|a_{n-1}
dn∣an−1(整除的传递性)
最大性证明:
假设d为
a
1
,
a
2
,
.
.
.
,
a
n
a_1,a_2,...,a_n
a1,a2,...,an的任意公因数。
d
∣
a
1
,
d
∣
a
2
=
>
d
∣
d
2
d|a_1,d|a_2=>d|d_2
d∣a1,d∣a2=>d∣d2
d
∣
d
2
,
d
∣
a
3
=
>
d
∣
d
4
d|d_2,d|a_3=>d|d_4
d∣d2,d∣a3=>d∣d4
…
d
∣
a
n
,
d
∣
d
n
−
1
=
>
d
∣
d
n
d|a_n,d|d_{n-1}=>d|d_n
d∣an,d∣dn−1=>d∣dn
由
d
∣
d
n
d|d_n
d∣dn可知
d
n
d_n
dn是最大公因数。