§ 4 最大公因式
如果多项式 φ ( x ) \varphi(x) φ(x) 既是 f ( x ) f(x) f(x) 的因式, 又是 g ( x ) g(x) g(x) 的因式, 那么
φ ( x ) \varphi(x) φ(x) 就称为 f ( x ) f(x) f(x) 与 g ( x ) g(x) g(x) 的一个公因式.
在公因式中占有特殊重要地位的是最大公因式.
定义 6 设 f ( x ) , g ( x ) f(x), g(x) f(x),g(x) 是 P [ x ] P[x] P[x] 中两个多项式. P [ x ] P[x] P[x] 中多项式 d ( x ) d(x) d(x)
称为 f ( x ) , g ( x ) f(x), g(x) f(x),g(x)的一个最大公因式,如果它满足下面两个条件:
- d ( x ) d(x) d(x) 是 f ( x ) , g ( x ) f(x), g(x) f(x),g(x) 的公因式;
- f ( x ) , g ( x ) f(x), g(x) f(x),g(x) 的公因式全是 d ( x ) d(x) d(x) 的因式.
例如, 对于任意多项式 f ( x ) , f ( x ) f(x), f(x) f(x),f(x) 就是 f ( x ) f(x) f(x) 与 0 的一个最大公因式.
特别地, 根据定义,两个零多项式的最大公因式就是 0 .
在有了以上的定义之后, 我们首先要解决的是最大公因式的存在问题,
以下的证明也给出了一个具体求法.
最大公因式的存在性的证明主要根据带余除法, 关于带余除法我们指出以下事实:
引理 如果有等式
f ( x ) = q ( x ) g ( x ) + r ( x ) f(x)=q(x) g(x)+r(x) f(x)=q(x)g(x)+r(x)
成立, 那么 f ( x ) , g ( x ) f(x), g(x) f(x),g(x) 和 g ( x ) , r ( x ) g(x), r(x) g(x),r(x) 有相同的公因式.
证明 如果 φ ( x ) ∣ g ( x ) , φ ( x ) ∣ r ( x ) \varphi(x)|g(x), \varphi(x)| r(x) φ(x)∣g(x),φ(x)∣r(x), 那么由 (1),
φ ( x ) ∣ f ( x ) \varphi(x) \mid f(x) φ(x)∣f(x). 这就是说, g ( x ) g(x) g(x),
r ( x ) r(x) r(x) 的公因式全是 f ( x ) , g ( x ) f(x), g(x) f(x),g(x) 的公因式. 反过来, 如果
φ ( x ) ∣ f ( x ) , φ ( x ) ∣ g ( x ) \varphi(x)|f(x), \varphi(x)| g(x) φ(x)∣f(x),φ(x)∣g(x), 那么 φ ( x ) \varphi(x) φ(x)
一定整除它们的组合
r ( x ) = f ( x ) − q ( x ) g ( x ) . r(x)=f(x)-q(x) g(x) . r(x)=f(x)−q(x)g(x).
这就是说, φ ( x ) \varphi(x) φ(x) 是 g ( x ) , r ( x ) g(x), r(x) g(x),r(x) 的公因式. 由此可见, 如果
g ( x ) , r ( x ) g(x), r(x) g(x),r(x) 有一个最大公因式 d ( x ) d(x) d(x), 那么 d ( x ) d(x) d(x) 也就是 f ( x ) , g ( x ) f(x), g(x) f(x),g(x)
的一个最大公因式. I
定理 2 对于 P [ x ] P[x] P[x] 中任意两个多项式 f ( x ) , g ( x ) f(x), g(x) f(x),g(x), 在 P [ x ] P[x] P[x]
中存在一个最大公因式 d ( x ) d(x) d(x), 且 d ( x ) d(x) d(x) 可以表成 f ( x ) , g ( x ) f(x), g(x) f(x),g(x) 的一个组合,
即有 P [ x ] P[x] P[x] 中多项式 u ( x ) , v ( x ) u(x), v(x) u(x),v(x) 使
d ( x ) = u ( x ) f ˙ ( x ) + v ( x ) g ( x ) . d(x)=u(x) \dot{f}(x)+v(x) g(x) . d(x)=u(x)f˙(x)+v(x)g(x).
证明 如果 f ( x ) , g ( x ) f(x), g(x) f(x),g(x) 有一个为零, 辟如说, g ( x ) = 0 g(x)=0 g(x)=0, 那么 f ( x ) f(x) f(x)
就是一个最大公因式,且
f ( x ) = 1 ⋅ f ( x ) + 1 ⋅ 0. f(x)=1 \cdot f(x)+1 \cdot 0 . f(x)=1⋅f(x)+1⋅0.
下面来看一般的情形. 无妨设 g ( x ) ≠ 0 g(x) \neq 0 g(x)=0. 按带余除法, 用 g ( x ) g(x) g(x) 除
f ( x ) f(x) f(x), 得到商 q 1 ( x ) q_{1}(x) q1(x),余式 r 1 ( x ) r_{1}(x) r1(x); 如果 r 1 ( x ) ≠ 0 r_{1}(x) \neq 0 r1(x)=0,
就再用 r 1 ( x ) r_{1}(x) r1(x) 除 g ( x ) g(x) g(x), 得到商 q 2 ( x ) q_{2}(x) q2(x), 余式 r 2 ( x ) r_{2}(x) r2(x); 又如果
r 2 ( x ) ≠ 0 r_{2}(x) \neq 0 r2(x)=0, 就用 r 2 ( x ) r_{2}(x) r2(x) 除 r 1 ( x ) r_{1}(x) r1(x), 得出商 q 3 ( x ) q_{3}(x) q3(x),
余式 r 3 ( x ) r_{3}(x) r3(x); 如此㫰转相除下去, 显然, 所得余式的次数不断降低, 即
t i a l ( g ( x ) ) > t i a l ( r 1 ( x ) ) > t i a l ( r 2 ( x ) ) > ⋯ , tial(g(x))>tial\left(r_{1}(x)\right)>tial\left(r_{2}(x)\right)>\cdots, tial(g(x))>tial(r1(x))>tial(r2(x))>⋯,
因此在有限次之后, 必然有余式为零.于是我们有一串等式
f ( x ) = q 1 ( x ) g ( x ) + r 1 ( x ) , g ( x ) = q 2 ( x ) r 1 ( x ) + r 2 ( x ) , … … … … r i − 2 ( x ) = q i ( x ) r i