数论第三节:素数与算术基本定理、几个著名猜想

素数的定义

一个大于1的整数,如果他的正因数只有1及他本身,就叫作素数(质数);否则称其为合数。

素数的定理

定理1(素数筛的原理)

设a是任一大于1的整数,则a的除1外的最小正因数q是质数,并且当a是合数时,满足:
q ≤ a q≤\sqrt{a} qa
(通俗的讲:一个数的最小正因数是质数,合数的最小正因数且小于根号a)
证明(反证法):
假设a的最小正因数q不是素数,则q除了1及本身外至少还有一个正因数s,且 s < q s<q sq
q ∣ a q|a qa s ∣ q s|q sq,可得 s ∣ a s|a sa,所以s也是a的一个正因数。
这与q是最小正因数相矛盾,所以假设不成立。
当a是合数时, a = a 1 ∗ q a=a_1*q a=a1q。假设q是最小正因数,若 q > a q>\sqrt{a} qa ,则 a 1 < a a_1<\sqrt{a} a1<a ,这与q是最小正因数相矛盾。所以假设矛盾。
说明;素数筛可以在 O ( n ∗ n ) O(n*\sqrt{n}) O(nn )时间内找出区间中的所有素数,无需使用辗转相除法。 具体实现可以看笔者的其他博客。

定理2

若p是质数,a是任一整数,则a能被p整除或p与a互质。
证明:显然成立。

推论

a 1 , a 2 , . . . , a n a_1,a_2,...,a_n a1,a2,...,an是n个整数,p是质数,若 p ∣ a 1 ∗ a 2 ∗ . . . ∗ a n p|a_1*a_2*...*a_n pa1a2...an,则p一定能整除某一个 a k a_k ak
证明:(反证法)
假设任意 a k a_k ak都不能被p整除,即 ( P , a i ) = 1 , i = 1 , 2 , 3... (P,a_i)=1,i=1,2,3... (P,ai)=1,i=1,2,3...
所以 ( P , a 1 a 2 . . . a n ) = 1 (P,a_1a_2...a_n)=1 (P,a1a2...an)=1,这与 P ∣ a 1 a 2 . . . a n P|a_1a_2...a_n Pa1a2...an矛盾。

定理3(算术基本定理)

任意大于1的整数能够被表示为质数的乘积,即任意大于1的整数a,都可以被唯一表示为若干素数的乘积,如下:
a = p 1 ∗ p 2 ∗ . . . ∗ p n , p 1 ≤ p 2 ≤ . . . ≤ p n a=p_1*p_2*...*p_n,p_1≤p_2≤...≤p_n a=p1p2...pn,p1p2...pn
其中, p 1 , p 2 , . . . , p n p_1,p_2,...,p_n p1p2...pn为素数。
这个定理的意思是,可以将素数理解为单位元,所有的整数都可以由素数构成的。
证明:采用数学归纳法,这里不赘述。

推论1

任意一个大于1的整数a,能够被唯一的写成
a = p 1 k 1 ∗ p 2 k 2 ∗ . . . ∗ p n k n , p 1 < p 2 < . . . < p n a=p_1^{k_1}*p_2^{k_2}*...*p_n^{k_n},p_1<p_2<...<p_n a=p1k1p2k2...pnkn,p1<p2<...<pn
其中,k_i∈Z。
这个式子的意义是:将质数因子变为严格递增的序列。方便后续表示与计算。
证明:
将定理3的多个连乘的p进行组合就行。

推论2

任意一个大于1的整数a的因子d,也能够被唯一的写成
d = p 1 h 1 ∗ p 2 h 2 ∗ . . . ∗ p n h n , k i ≥ h i ≥ 0 d=p_1^{h_1}*p_2^{h_2}*...*p_n^{h_n},k_i≥h_i≥0 d=p1h1p2h2...pnhn,kihi0
其中,k_i∈Z。
这个式子的意义是:将质数因子也可以进行一般化的表示
比如100可以表示为 100 = 2 ∗ 50 = 2 2 ∗ 5 2 100=2*50=2^2*5^2 100=250=2252
而因子50可以表示为 50 = 2 ∗ 5 2 50=2*5^2 50=252

推论3(非常重要)

设A,B是任意两个正整数,且满足:
A = p 1 a 1 ∗ p 2 a 2 ∗ . . . ∗ p n a n , a i ≥ 0 A=p_1^{a_1}*p_2^{a_2}*...*p_n^{a_n},a_i≥0 A=p1a1p2a2...pnan,ai0
B = p 1 b 1 ∗ p 2 b 2 ∗ . . . ∗ p n b n , b i ≥ 0 B=p_1^{b_1}*p_2^{b_2}*...*p_n^{b_n},b_i≥0 B=p1b1p2b2...pnbn,bi0

( a , b ) = p 1 r 1 ∗ p 2 r 2 ∗ . . . ∗ p n r n (a,b)=p_1^{r_1}*p_2^{r_2}*...*p_n^{r_n} (a,b)=p1r1p2r2...pnrn
[ a , b ] = p 1 s 1 ∗ p 2 s 2 ∗ . . . ∗ p n s n [a,b]=p_1^{s_1}*p_2^{s_2}*...*p_n^{s_n} [a,b]=p1s1p2s2...pnsn
其中, r i = m i n ( a i , b i ) , s i = m a x ( a i , b i ) r_i=min(a_i,b_i),s_i=max(a_i,b_i) ri=min(ai,bi),si=max(ai,bi)
证明:(这里不进行严谨证明,只进行直观证明)
最大公约数一定是形如这种的格式 d = p 1 h 1 ∗ p 2 h 2 ∗ . . . ∗ p n h n , k i ≥ h i ≥ 0 d=p_1^{h_1}*p_2^{h_2}*...*p_n^{h_n},k_i≥h_i≥0 d=p1h1p2h2...pnhn,kihi0。所以需要让 h i h_i hi尽可能的小,同时还要满足d|a,d|b。所以 r i r_i ri只能取最小值。同理,需要让 s i s_i si尽可能的小,同时还要满足a|[a,b],b|[a,b],所以 s i s_i si只能取两者的最大值,才能实现全局的最小值。

定理4 (质数的个数是无穷的)

质数的个数是无穷的。
证明:(反证法)
假设素数有限,且为 p 1 , p 2 , . . . , p n p_1,p_2,...,p_n p1,p2,...,pn
设存在一个数N,满足 N = p 1 ∗ p 2 ∗ . . . ∗ p n + 1 N=p_1*p_2*...*p_n+1 N=p1p2...pn+1成立,且由于N>1,所以一定存在一个素因数 p N p_N pN
若:
(1) p N ∈ p 1 , p 2 , . . . , p n p_N∈{p_1,p_2,...,p_n} pNp1,p2,...,pn
已知 p N ∣ N p_N|N pNN,且 p N ∣ ( p 1 ∗ p 2 ∗ . . . ∗ p n ) p_N|(p_1*p_2*...*p_n) pN(p1p2...pn),而 N = p 1 ∗ p 2 ∗ . . . ∗ p n + 1 N=p_1*p_2*...*p_n+1 N=p1p2...pn+1,所以 p N ∣ ( N − p 1 ∗ p 2 ∗ . . . ∗ p n + 1 ) = p N ∣ 1 p_N|(N-p_1*p_2*...*p_n+1)=p_N|1 pN(Np1p2...pn+1)=pN∣1,这与素数的定义相矛盾。所以 p N ∉ p 1 , p 2 , . . . , p n p_N∉{p_1,p_2,...,p_n} pN/p1,p2,...,pn
(2) p N ∉ p 1 , p 2 , . . . , p n p_N∉{p_1,p_2,...,p_n} pN/p1,p2,...,pn
说明有存在其他素数 p N p_N pN不在有限素数中的其他素数,与假设矛盾。
综上,素数的个数有限。

几个猜想

1、孪生素数猜想

存在无穷多个素数P,使得P+2也是素数。
背景: 在欧几里得证明素数的数量无限后,提出了这个猜想,但是目前还没有人实现证明。
说明:
如果想找到一个k连续的合数组。 可以使用下面的方法: p = ( k + 1 ) ! + k p=(k+1)!+k p=(k+1)!+k
就可以找到一个间隔为k的合数组 p , p + 1 , . . . , p + k − 1 {p,p+1,...,p+k-1} p,p+1,...,p+k1

2、等差素数列猜想(已经被证明正确)

长度为k的素数等差数列,公差能够被小于k的所有素数整除。
背景: 被拉格朗日和华林证明了。

3、费马数猜想(已经被证明错误)

F m = 2 2 m + 1 F_m=2^{2^{m}}+1 Fm=22m+1(m=1,2,3,…)是素数。
背景: 费马证明了 F 1 F_1 F1 F 4 F_4 F4是素数,于是有了这个猜想。由欧拉证明 F 5 F_5 F5不是素数。
于是有了新的猜想:
F_m在m>5之后都是合数。

4、梅森数与双完全数(已经被证明正确)

梅森数: M n = 2 n − 1 M_n=2^n-1 Mn=2n1
双完全数:因数之和等于2倍的自己的数。比如6,1+2+3+6=12。
双完全数的充要条件: 2 n − 1 M n 2^{n-1}M_n 2n1Mn

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值