👨🎓个人主页
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
假设数据是关于坐标原点对称,那么对称中心两侧的数据疏密程度应一致,取正值数据在绝对值样本中的秩和与取负值在绝对值样本中的秩和相近。
一、基本概念
威尔科克森秩检验(Wilcoxon Rank Test),又称威尔科克森符号秩检验或威尔科克森和检验,是由弗兰克·威尔科克森(Frank Wilcoxon)提出的一种非参数统计方法。非参数检验是在总体分布形式未知的情况下,对数据的总体分布或总体分布间的差异进行推断的方法。威尔科克森秩检验基于数据的秩(即数据在样本中的相对位置或大小顺序),而不是数据本身的具体值,因此特别适用于数据分布未知或不符合参数检验假设(如正态分布)的情况。
二、类型与应用
威尔科克森秩检验主要包括两种类型:威尔科克森符号秩检验(Wilcoxon Signed Rank Test)和威尔科克森秩和检验(Wilcoxon Rank Sum Test,也称为Mann-Whitney U检验)。
- 威尔科克森符号秩检验:用于配对样本的检验,即比较同一组对象在不同条件下或不同时间点上的观测值差异。它适用于T检验中的成对比较,但并不要求成对数据之差服从正态分布,只要求对称分布即可。
- 威尔科克森秩和检验:用于比较两组独立样本的分布差异,特别是当样本量较小且数据分布未知时。它基于两组样本合并后的秩和来推断两组样本是否来自相同的总体或具有相同的中位数。
三、检验步骤
以威尔科克森秩和检验为例,其检验步骤通常包括:
- 提出原假设和备择假设:原假设H0为两组样本来自相同的分布(或具有相同的中位数),备择假设H1为两组样本来自不同的分布(或具有不同的中位数)。
- 数据合并与排序:将两个样本的数据合并成一个混合样本,并对所有数据进行排序。
- 计算秩次和:为每个数据点赋予秩次,并分别计算每个样本的秩次和W1和W2(或W,表示较小样本组的秩和)。
- 计算检验统计量:根据秩次和计算检验统计量,如U统计量或z统计量,并计算相应的p值。
- 得出结论:根据p值与显著性水平(如0.05)的比较结果,判断是否拒绝原假设。
四、注意事项
- 数据要求:威尔科克森秩检验适用于连续变量或等级变量,且不要求数据服从正态分布。
- 样本量:对于小样本(n<20),通常使用U统计量计算p值;对于大样本(n>20),可以使用z统计量来计算p值。
- 连结修正:当存在秩次相同的情况时,需要进行连结修正,以调整检验统计量的计算。
- 解释结果:p值越小,说明拒绝原假设的证据越强;但p值大并不意味着接受原假设,而只是表示没有足够的证据来拒绝它。
五、示例与应用领域
威尔科克森秩检验在多个领域都有广泛应用,如医学、生物学、社会科学等。例如,在医学研究中,可以比较两种不同治疗方法下患者的疗效差异;在社会科学研究中,可以比较不同群体在某个变量上的表现差异等。
总之,威尔科克森秩检验是一种强大且灵活的非参数检验方法,特别适用于数据分布未知或不符合参数检验假设的情况。通过合理的假设检验步骤和注意事项的遵循,可以准确地推断两组样本之间的差异情况。
📚2 运行结果
部分代码:
function [dist, w] = wilcoxon_dist_groups(pH0, Neq0, T, strateq0)
N = Neq0 + sum(T);
w = (0:0.5:(N*(N+1)/2)); % range of possible values
dist = zeros(size(w));
ranks = Neq0+cumsum(T)-0.5*(T-1); % ranks for non-zero groups
% handle 0's
if Neq0 > 0
switch strateq0
case 'Wilcoxon'
% after Wilcoxon 1945 "Individual Comparisons by Ranking
% Methods":
% discard 0's and adjust remaining ranks by subtracting Neq0
%
% adjust the ranks
ranks = ranks - Neq0;
% The ranksum resulting from the Neq 0's is R = 0
dist(1) = 1;
case 'Pratt'
% after Pratt 1959 "Remarks on Zeros and Ties in the Wilcoxon
% Signed Rank Procedures":
% discard 0's and without adjusting the remaining ranks.
% The ranksum resulting from the Neq 0's is R = 0
dist(1) = 1;
case 'Marascuilo'
% after Marascuilo 1977 "Nonparametric and Distribution-free
% Methods for the Social Sciences":
% shared rank of the 0's is accounted by one half to the ranksum
%
% The first Neq0 values share the rank (1 + 2 + ... + Neq0)/ Neq0
% = (Neq0+1)/2. Their ranksum is R = Neq*(Neq0+1)/4
Req0 = Neq0*(Neq0+1)/4;
dist(2*Req0+1) = 1;
end
else
dist(1) = 1;
end
% handle remaining ranks for non-zero values
for rdx=1:length(T)
shift = 2*ranks(rdx);
for tdx=1:T(rdx)
dist = pH0*dist + (1-pH0).*[zeros(1,shift),dist(1:end-shift)];
end
end
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]林跃东.基于威尔科克森符号秩检验用能权核查数据分析[J].化学工程与装备,2021(09):187-189.DOI:10.19566/j.cnki.cn35-1285/tq.2021.09.086.