目录
二、Wilcoxon(威尔科克森)符号秩检验matlab代码
参考链接:https://blog.csdn.net/sereasuesue/article/details/111084411
一、Wilcoxon(威尔科克森)符号秩检验原理
符号检验只考虑的分布在中位数两侧的样本数据的个数,并没有考虑中位数两侧数据分布的疏密程度,这就使得符号检验的结果比较粗糙,检验功率较低。统计学家维尔科克森在1945年,提出了一种更为精细的“符号秩检验法”,该方法是在配对样本的符号检验基础上发展起来的,比传统的单独用正负号的检验更加有效。它适用于单个样本中位数的检验,也适用于配对样本的比较检验,但并不要求样本之差服从正态分布,只要求对称分布即可。
设连续总体X服从对称分布,其中位数记为Me,考虑假设检验问题:
H0:Me=M0, H1:Me/=M0(Me不等于m0)
从总体X中抽取容量为n的样本X1,X2,......,Xn,将 |Xi-M0| ,i=0,1,2,....n,从小到大排序,并计算它们的秩(即序号,取值相同时求平均秩),根据 Xi-M0 的符号将|Xi-M0|分为正号组和负号组,用W+和W-分别表示正号组和负号组的秩和,则W+ + W- =n(n+1)/2。
如果H0成立,则W+和W-取值相差不大,即min(W+,W-)不应太小,否则认为H0不成立。选取统计量
W=min(W+,W-)
对于给定的显著性水平a,根据W的分布计算出临界值Wa,当W<=Wa时,拒绝