Wilcoxon符号秩检验及其matlab代码

目录

一、Wilcoxon(威尔科克森)符号秩检验原理

二、Wilcoxon(威尔科克森)符号秩检验matlab代码

三、实例 

1、实例一

2、实例二


参考链接:https://blog.csdn.net/sereasuesue/article/details/111084411

一、Wilcoxon(威尔科克森)符号秩检验原理

符号检验只考虑的分布在中位数两侧的样本数据的个数,并没有考虑中位数两侧数据分布的疏密程度,这就使得符号检验的结果比较粗糙,检验功率较低。统计学家维尔科克森在1945年,提出了一种更为精细的“符号秩检验法”,该方法是在配对样本的符号检验基础上发展起来的,比传统的单独用正负号的检验更加有效。它适用于单个样本中位数的检验,也适用于配对样本的比较检验,但并不要求样本之差服从正态分布,只要求对称分布即可。

      设连续总体X服从对称分布,其中位数记为Me,考虑假设检验问题:

          H0:Me=M0,               H1:Me/=M0(Me不等于m0)

   从总体X中抽取容量为n的样本X1,X2,......,Xn,将 |Xi-M0| ,i=0,1,2,....n,从小到大排序,并计算它们的秩(即序号,取值相同时求平均秩),根据 Xi-M0 的符号将|Xi-M0|分为正号组和负号组,用W+和W-分别表示正号组和负号组的秩和,则W+  +  W-  =n(n+1)/2。

   如果H0成立,则W+和W-取值相差不大,即min(W+,W-)不应太小,否则认为H0不成立。选取统计量

    W=min(W+,W-)

    对于给定的显著性水平a,根据W的分布计算出临界值Wa,当W<=Wa时,拒绝

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值