- t检验:
- 用于比较两个总体均值的双样本t检验的假设:
- 两个样本彼此独立
- 两个样本的方差相等
- 两个样本都是正态分布
- 第一个条件必须满足,当2和3不满足但样本很大时,结果大致正确
- 当样本很小,数据偏斜或非正态时,结果比较差
- 用于比较两个总体均值的双样本t检验的假设:
- wilcoxon秩和检验:
- 只做了独立性和等方差的假设,不假设数据是已知分布(已知分布用数学公式描述)
- 由于威尔科克森秩和检验不假设已知分布,因此它不处理参数,因此称之为非参数检验。
- 考虑零的另一种方法是,两个总体具有相同的分布和相同的中位数。如果我们拒绝零,这意味着我们有证据表明一个分布被移动到另一个分布的左侧或右侧。由于我们假设我们的分布相等,因此拒绝零意味着我们有证据表明两个总体的中位数不同。
- 检验统计量可以计算为值的秩之和:从两个组中获取所有值,根据它们的值从低到高对它们进行排名,然后对其中一个组中的排名求和
- 常使用秩转换的非参数检验:
- 对于计量资料,若不满足正态和方差齐性条件,这时小样本资料选t检验或F检验是不妥的,而选秩转换的非参数检验是恰当的;
- 对于分布不知是否正态的小样本资料,为保险起见,宜选秩转换的非参数检验;
- 对于一端或两端是不确定数值(如<20岁、≥65岁等)的资料,不管是否正态分布,只能选秩转换的非参数检验;
- 对于等级资料,若选择行×列(R×C)列联表资料的χ^2检验,只能推断构成比差别,而选择秩转换的非参数检验,可推断等级强度差别。
- 单样本Wilcoxon符号秩检验的目的是推断样本所来自的总体中位数M和某个已知的总体中位数M0是否有差别。用样本各变量值和M0的差值,即推断差值的总体中位数和0是否有差别。其适用条件为:观察变量为不满足正态分布的连续变量。
- 统计量计算:T值法:指对数据编秩计算后,通过T值表确定P值,做出统计推断。
- 检验统计量T值的计算
- 每个样本数据都与已知总体中位数M0配成对子,并计算差值;
- 省略所有差值为0的对子数,令余下的有效对子数为n;
- 按n个差值的绝对值从小到大编正秩和负秩,遇差值的绝对值相等者取平均秩,称为相同秩(ties)(样本较小时,如果相同秩较多,检验结果会存在偏性,因此应提高测量精度,尽量避免出现较多相同秩);
- 任意取正秩和(T+)或负秩和(T-)为T。
- 确定P值,做出统计推断:
- 当n≤50时,查(T值界值表(https://site.cdn.mengte.online/official/2022/04/20220406021554480.pdf))。
- 查表时,自左侧找到n,将检验统计量T值与相邻左侧一栏的界值相比:
- 若T在上、下界值范围内,其P值大于表上方相应概率水平;
- 若T值恰好等于界值,其P值等于(一般是近似等于)相应概率水平;
- 若T值在上、下界值范围外,其P值小于相应概率水平,可向右移一栏,再与界值相比。
- 检验统计量T值的计算
- 双样本 t 检验的原假设是相等均值,而 Wilcoxon 检验的原假设通常被视为相等中位数。
- 如果已知计量资料满足(或近似满足)t检验或F检验条件,应选t检验或F检验;若选秩转换的非参数检验,会降低检验效能。
- 两个独立样本的t-test是检验两个样本的均值是否相等。而相对的,两个独立样本的wilcoxon test 则是检验两个样本的中位数,或者说两个样本的分布是否有偏移。因此,wilcoxon test在计算统计量时是先将两个样本混到一起,然后对混合后的list进行从小到大排序,根据排序把两个样本的值分别转换成排序序数,最后比较两个样本的序数的大小。如果序数大的富集在其中一个样本,表明该样本相对另一个样本的值要更大,相反亦然。
- wilcoxon test在分析中非常常用,经常能在读文章时发现到。通常当要比较两个样本时,首先考虑是否满足参数检验方法t-test的假设条件(即正太分布或者样本总量很大(>30),方差相同);若不满足,则可使用wilcoxon test代替。
wilcoxon秩和检验--学习笔记
于 2022-11-21 16:57:09 首次发布