【无人机】基于强化学习的多无人机移动边缘计算与路径规划研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

一、研究背景与意义

二、研究目标与内容

三、研究方法与技术路线

四、仿真实验与结果分析

五、结论与展望

📚2 运行结果

🎉3 文献来源

🌈4 Matlab代码、数据、文章下载


💥1 概述

文献来源:

摘要:
移动边缘计算(MEC)利用网络边缘的计算能力来执行各种物联网应用中的计算密集型任务。同时,无人机(UAV)具有灵活扩大覆盖范围和增强网络性能的巨大潜力。因此,利用无人机为大量物联网设备提供边缘计算服务已成为一种有前景的范式。本文研究了无人机辅助边缘计算网络的路径规划问题,其中一架无人机部署了边缘服务器,用于执行从多个设备卸载的计算任务。我们考虑设备的移动性,采用了高斯马尔可夫随机移动模型。考虑到无人机动态飞行和执行任务消耗的能量,我们制定了一个旨在最大化设备卸载的数据比特量同时最小化无人机能量消耗的路径规划问题。为了处理复杂环境的动态变化,我们应用深度强化学习(DRL)方法,基于双深度Q学习网络(DDQN)开发了一种在线路径规划算法。广泛的仿真结果验证了所提出的基于DRL的路径规划算法在收敛速度和系统奖励方面的有效性。

移动边缘计算(MEC)使得网络边缘的计算能力能够灵活快速地部署创新的应用和服务,为大量物联网设备[1]。有了MEC的部署,设备可以将计算密集型任务转移到附近强大的边缘服务器,以减少延迟和节省能量[1],[2]。与固定的边缘服务器不同,最近的一些工作致力于移动边缘服务器的研究,它可以在恶劣环境中提供更灵活、更经济和更高效的计算服务。最近的一些文献提出使用无人机来改善地面物联网设备的连接性[3]。无人机辅助无线通信在灵活部署、完全可控的移动性和增强网络性能方面具有优势,因此引起了越来越多的研究兴趣。因此,无人机辅助边缘计算网络是一个自然的选择和有前景的范式,在其中如何优化无人机的飞行路径以满足大量设备的通信和计算需求成为一个重要且具有挑战性的问题。

最近,一些现有文献已经研究了无人机辅助移动边缘计算网络中的路径规划问题。在[4]中,针对无人机的延迟和能量消耗约束条件下,联合优化了无人机的轨迹和比特分配。然而,在这些工作中,设备被假定为固定的,并且移动性没有被考虑进去。在实际中,设备可能会随着时间动态变化,因此无人机需要根据移动设备的时变位置相应地调整其轨迹。与此同时,上述工作主要集中在传统的基于优化的路径规划算法上,但随着无人机和设备数量的增加,由于优化变量的激增,该方法效率可能不高[5]。在[6]中,通过使用深度神经网络(DNN)进行函数逼近,已经证明深度强化学习(DRL)在逼近Q值方面是有效的。此后,DRL已经被应用于无线网络中的在线资源分配和调度设计[7] - [9]。具体来说,在[7]中,通过优化卸载决策和计算资源分配,最小化了多用户MEC网络的执行延迟和能量消耗的总系统成本。在[8]中提出了一种在线卸载算法,用于最大化支持无线能量收集的无线供能MEC网络的加权求和计算速率。在[9]中,研究了基于深度强化学习的物联网设备计算卸载策略。然而,据我们所知,目前很少有现有的工作探讨了如何智能设计移动边缘计算网络中无人机的飞行轨迹,以服务于大量设备,尤其是考虑到设备的动态移动性和无人机与设备之间的动态关联。

移动数据处理技术在通信行业的使用正在增加。由于这项技术,具有大计算能力的物联网设备可能会以灵活和及时的方式推出独特的应用程序和服务。当边缘服务器用于卸载计算密集型任务时,延迟降低,能耗降低。近年来,无人机(UAV)以终端用户的多址边缘计算服务器的形式得到了利用。由于其灵活的部署、全面的控制和网络性能,UA V辅助无线通信受到了广泛的研究兴趣UAV辅助的边缘计算网络是有意义的,并且在处理巨大设备的通信和处理需求时是一个有趣的概念。

空中无人机(UAV)长期以来一直被用作移动网络中的网络处理器,但它们现在被用作移动边缘计算(MEC)中的移动服务器。由于它们的灵活性、可移植性、强大的视线通信联系以及低成本、可改变的使用,它们在研究和商业应用中变得更加流行。广泛的民用服务现在可能因其基本特性而得到支持,包括运输和工业监测、农业以及森林火灾和无线服务。本项目研究了基于无人机的移动边缘计算网络,其中无人机(UAV)进行移动终端用户向其提供的计算。为了确保每个TU的服务质量(QoS),UA V基于移动TU的位置动态选择其路线。

详细文章见第4部分。

一、研究背景与意义

随着物联网和人工智能技术的快速发展,多无人机系统在各个领域展现出巨大的应用潜力。然而,多无人机协同工作环境下复杂的网络拓扑结构、有限的能量资源以及动态变化的环境等挑战,严重制约了其性能发挥。移动边缘计算(MEC)技术的引入,为多无人机系统提供了强大的计算和存储能力,使得无人机能够在边缘节点进行数据处理和任务卸载,有效降低了对自身计算能力和通信带宽的需求。因此,基于强化学习的多无人机移动边缘计算与路径规划研究具有重要的理论意义和应用价值。

二、研究目标与内容

本文旨在探讨基于强化学习的多无人机移动边缘计算与路径规划策略,以提高系统效率,降低能耗。研究内容包括:

  1. 分析多无人机MEC系统的关键技术难点,如路径规划、任务分配、资源调度以及干扰协调等。
  2. 阐述基于强化学习的解决方案,包括状态空间、动作空间、奖励函数的设计以及算法选择。
  3. 通过仿真实验验证所提方案的有效性,并对未来的研究方向进行展望。

三、研究方法与技术路线

  1. 无人机模型:包括无人机的飞行速度、能量消耗模型、计算能力、通信能力等。
  2. 边缘服务器模型:包括边缘服务器的计算能力、存储容量、通信带宽等。
  3. 任务模型:包括任务的计算需求、数据大小、时延要求等。
  4. 通信模型:包括无人机与边缘服务器之间的信道模型,考虑信道衰落和干扰等因素。
  5. 能量模型:考虑无人机的飞行能量消耗和计算能量消耗。

基于上述模型,采用强化学习方法进行路径规划和资源分配。状态空间包含了系统当前的各种信息,如每个无人机的当前位置、剩余能量、当前任务、附近边缘服务器的状态等。动作空间代表了每个无人机可以采取的动作,如选择下一个飞行目标点、选择卸载任务的边缘服务器、调整飞行速度等。奖励函数的设计考虑了多个因素,如任务完成时间、能量消耗、任务成功率、网络延迟等,并对这些因素进行加权组合。强化学习算法包括Q-learning、Deep Q-Network(DQN)、Actor-Critic、Proximal Policy Optimization(PPO)等,需根据具体应用场景进行选择。

四、仿真实验与结果分析

仿真环境模拟了多无人机MEC系统的运行,包括无人机的飞行、任务执行、资源分配等过程。实验评估了不同强化学习算法的性能,比较了它们在任务完成时间、能量消耗、任务成功率等指标上的表现。通过分析实验结果,验证了所提方案的可行性和优越性。仿真实验还重点比较了不同强化学习算法在不同规模的多无人机系统中的表现,并分析了算法参数对系统性能的影响。

五、结论与展望

本文通过研究基于强化学习的多无人机移动边缘计算与路径规划策略,验证了该方法能够有效解决多无人机MEC系统中的路径规划和资源分配问题。未来研究将进一步考虑更复杂的系统模型,如动态环境、任务优先级、无人机故障等,并探索更先进的强化学习算法,如多智能体强化学习,以更好地处理多无人机协同问题。同时,分布式强化学习算法的研究也将提高系统可扩展性和鲁棒性。此外,安全性与隐私保护也是未来研究的重要方向。

综上所述,基于强化学习的多无人机移动边缘计算与路径规划研究为构建高效、可靠的多无人机系统提供了新的途径,并有望在未来广泛应用于各个领域。

📚2 运行结果

 

 

 

 部分代码:

function TU_demand_matrix = TU_demand_linear
%% parameters
global N2;
global TU_info;
global SERVICE_RADIS;
global n;
global B;

%% Normalize
maxDemand=max(TU_info(:,3));
minDemand=min(TU_info(:,3));
%% Calculate accumulated TU_info service demand matrix
TU_demand_matrix=zeros(N2,N2);                   %initial T as N2*N2 0 matrix
for x=1:N2                       %for point (x,y) in N2*N2, summrize demand from TU_info with in SERVICE_RADIS, return T
    for y=1:N2
        sum=0;
        for i=1:size(TU_info,1)
            if norm([x/N2,y/N2]-TU_info(i,1:2))<= SERVICE_RADIS
                sum=sum+(TU_info(i,3)-minDemand)/(maxDemand-minDemand);
            end
        end
        TU_demand_matrix(x,y)=sum;
    end
end
end

🎉3 文献来源

部分理论来源于网络,如有侵权请联系删除。

🌈4 Matlab代码、数据、文章下载

基于深度强化学习无人机辅助边缘计算网络路径规划一、引言1.1、研究背景意义在现代通信和计算技术的迅猛发展中,无人机(Unmanned Aerial Vehicle,UAV)辅助边缘计算(Mobile Edge Computing,MEC)网络因其独特的地理位置灵活性和快速响应能力,成为解决地面网络覆盖不足和计算资源分配不均问题的有效手段。无人机能够在空中灵活移动,扩展网络覆盖范围,增强网络性能,特别是在应急响应、远程监控等场景中显示出巨大的应用潜力。通过搭载边缘计算服务器,无人机可以实时处理来自地面设备的数据,减少数据传输延迟,提高数据处理效率。然而,如何有效地规划无人机的飞行路径,以优化网络性能和服务质量,仍然是一个充满挑战的研究课题。路径规划不仅需要考虑无人机的飞行能力、能源消耗,还要考虑到地面设备的动态变化和计算需求。因此,研究无人机辅助边缘计算网络的路径规划问题,对于提升整个网络的性能和效率具有重要意义。1.2、研究现状目前,无人机路径规划研究主要集中在静态环境或简单动态环境下的优化问题。许研究采用了传统的优化算法,如遗传算法、粒子群优化算法等,这些方法在处理小规模、静态环境下的路径规划问题时表现出色。然而,随着问题规模的扩大和环境复杂度的增加,这些方法的计算复杂度和求解时间显著增加,难以满足实时性和动态性的要求。近年来,深度强化学习(Deep Reinforcement Learning,DRL)在处理复杂决策问题上显示出强大的能力。在无人机路径规划领域,DRL也被尝试应用于解决动态环境下的路径优化问题。例如,一些研究使用深度Q网络(Deep Q-Network,DQN)来学习无人机的最优飞行路径,通过环境的交互来不断优化飞行策略。尽管这些研究取得了一定的进展,但如何设计有效的状态空间、动作空间和奖励函数,仍然是DRL在无人机路径规划中的应用中需要解决的关键问题。1.3、研究目的贡献本研究旨在解决无人机辅助边缘计算网络中的动态路径规划问题,提出一种基于深度强化学习路径规划方法。具体而言,本研究的主要贡献包括:设计了一种新的状态空间表示方法,能够有效捕捉环境动态变化和无人机的实时状态。构建了合适的动作空间和奖励函数,使得无人机能够在复杂的动态环境中学习到最优的飞行路径。提出了一种基于双深度Q学习网络(Double Deep Q-Network,DDQN)的路径规划算法,通过仿真实验验证了算法的有效性和优越性。二、系统模型问题公式化2.1、无人机辅助边缘计算网络模型在本研究中,我们考虑一个由无人机个地面设备组成的边缘计算网络。无人机装备有计算资源和通信设备,可以在飞行过程中接收并处理来自地面设备的数据。网络架构包括无人机作为移动边缘服务器,地面设备如物联网(IoT)设备,它们可以卸载计算任务到无人机无人机的计算能力和通信范围是有限的,因此需要合理规划其飞行路径,以最大化网络的整体性能。2.2、高斯马尔可夫随机移动模型为了模拟地面设备的移动性,我们采用了高斯马尔可夫随机移动模型(Gauss-Markov Mobility Model)。该模型假设设备的移动速度和方向在每个时间步长内根据高斯分布随机变化,从而更真实地反映实际环境中设备的动态行为。这一模型不仅考虑了设备的随机移动性,还保留了设备移动的连续性和平滑性,使得路径规划问题更加贴近现实。2.3、路径规划问题公式化路径规划问题的目标是寻找一组最优的无人机飞行路径,使得在满足无人机飞行能力和能量约束的前提下,系统整体的性能指标达到最优。具体来说,我们定义了一个数学模型,包括以下要素:状态空间:状态空间包括无人机的位置、速度、剩余能量以及地面设备的位置和计算需求。动作空间:动作空间定义了无人机在每个时间步长内可以采取的动作,如改变飞行方向、调整飞行速度等。奖励函数:奖励函数用于评价无人机的每个动作的好坏,主要考虑能量消耗、计算任务完成量和任务延迟等因素。约束条件:包括无人机的最大飞行距离、最大速度、最小飞行高度等物理限制,以及能量和计算资源的约束。三、基于深度强化学习路径规划方法3.1、深度Q学习网络(DDQN)概述深度Q学习网络(Deep Q-Network,DQN)是一种结合了深度学习和Q学习的强化学习算法,通过经验回放和目标网络来解决传统Q学习中的过估计问题和数据相关性问题。双深度Q学习网络(Double Deep Q-Network,DDQN)进一步改进了DQN,通过使用两个独立的网络来分别选择动作和评估动作,从而减少学习过程中的偏差,提高学习的稳定性和效率。在本研究中,我们采用DDQN来学习无人机的最优路径规划策略。通过环境的交互,无人机的DDQN模型不断更新其Q值函数,从而在复杂的动态环境中找到最优的飞行路径。3.2、状态空间设计状态空间的设计是路径规划问题中的关键步骤之一。为了全面捕捉环境中的动态变化和无人机的实时状态,我们定义了一个维的状态空间,包括以下特征:无人机的位置:无人机的当前地理位置,用经纬度表示。无人机的速度:无人机的当前飞行速度,包括速度和方向。无人机的剩余能量:无人机的当前剩余能量,用于评估飞行路径的能量消耗。地面设备的位置:地面设备的当前地理位置,用于计算无人机设备之间的距离。地面设备的计算需求:地面设备需要卸载的计算任务量,用于评估无人机的服务能力。3.3、动作空间设计动作空间定义了无人机在每个时间步长内可以采取的动作。为了保证无人机的飞行路径平滑且符合物理限制,我们设计了以下离散的动作集:飞行方向调整:无人机可以调整其飞行方向,包括左转、右转和直飞。飞行速度调整:无人机可以调整其飞行速度,包括加速、减速和保持当前速度。任务处理决策:无人机决定是否接收并处理地面设备的计算任务。3.4、奖励函数设计奖励函数是强化学习算法中引导学习过程的重要部分。为了平衡能量消耗和任务完成量,我们设计了一个目标的奖励函数,包括以下要素:能量消耗惩罚:根据无人机的能量消耗情况,给予负奖励,鼓励无人机选择能量消耗低的路径。任务完成奖励:根据无人机完成的计算任务量,给予正奖励,鼓励无人机优先处理计算需求大的任务。任务延迟惩罚:根据任务的完成时间,给予负奖励,鼓励无人机尽快完成任务,减少延迟。3.5、算法流程基于DDQN的路径规划算法流程主要包括以下几个步骤:环境初始化:设置无人机的初始位置、速度和能量,以及地面设备的初始位置和计算需求。状态观测:无人机观测当前环境状态,包括自身状态和地面设备状态。动作选择:根据当前状态,使用DDQN模型选择下一个最佳动作。环境交互:无人机执行选择的动作,并环境进行交互,获取新的状态和奖励。经验存储:将当前的状态、动作、奖励和下一个状态存入经验回放池。模型更新:从经验回放池中随机采样一批经验,用于更新DDQN模型。终止条件判断:如果达到预设的迭代次数或性能指标,算法终止;否则,返回步骤2继续执行。四、仿真结果性能评估4.1、仿真环境设置为了验证所提路径规划算法的有效性,我们在一个模拟的城市环境中进行了仿真实验。仿真环境中包含移动的地面设备和无人机,设备的位置和移动速度根据高斯马尔可夫模型随机生成。仿真工具使用MATLAB,仿真参数包括无人机的初始位置、最大飞行速度、能量限制以及地面设备的计算需求等。4.2、对比算法为了评估所提算法的性能,我们将其以下几种基准算法进行对比:随机路径算法:无人机随机选择飞行路径,用于评估基本性能下限。最短路径算法:无人机根据地面设备的静态位置计算最短路径,忽略动态变化和能量消耗。遗传算法:一种传统的优化算法,通过迭代寻找最优路径。4.3、收敛速度分析我们首先分析了算法的收敛速度。实验结果显示,所提的基于DDQN的路径规划算法在迭代约200次后开始收敛,而遗传算法则需要更的迭代次数才能达到相似的性能水平。这表明DDQN算法在处理动态路径规划问题时具有更快的收敛速度和更好的适应性。4.4、系统奖励评估在系统奖励方面,所提算法显著优于随机路径算法和最短路径算法。通过合理设计奖励函数,DDQN算法能够在减少能量消耗的同时,最大化完成的计算任务量。遗传算法虽然也能找到较优的解,但在处理动态变化时的性能不如DDQN算法。4.5、能量消耗分析能量消耗是评估无人机路径规划算法的重要指标之一。实验结果表明,所提算法在能量消耗方面表现优异,通过智能选择飞行路径和任务处理策略,有效地减少了无人机的总能量消耗。最短路径算法相比,所提算法在保证任务完成量的同时,能量消耗降低了约20%。4.6、路径质量比较最后,我们对不同算法生成的路径质量进行了比较。随机路径算法生成的路径杂乱无章,最短路径算法虽然路径较短,但未能考虑设备的动态变化和无人机的能量消耗。遗传算法生成的路径较为平滑,但计算时间较长。而所提的DDQN算法在保证路径平滑性的同时,能够实时调整飞行路径,适应环境变化,整体性能最优。五、结论展望5.1、研究总结本文提出了一种基于深度强化学习无人机辅助边缘计算网络路径规划方法。通过设计合理的状态空间、动作空间和奖励函数,利用双深度Q学习网络(DDQN)学习无人机的最优飞行路径。仿真实验结果表明,所提算法在收敛速度、系统奖励、能量消耗和路径质量等方面均表现出优异性能,显著优于传统算法。5.2、研究限制尽管本研究取得了一些成果,但也存在一些局限性。首先,仿真环境相对简单,未能完全模拟真实世界中的复杂情况。其次,无人机数量和地面设备数量有限,未能充分验证算法在大规模网络中的性能。5.3、未来研究方向未来的研究工作将主要集中在以下几个方面:复杂环境模拟:构建更加真实的仿真环境,包括更的障碍物、复杂的天气条件和样的地面设备类型。大规模网络优化:研究在大规模网络中如何有效部署无人机,提升算法的可扩展性和实时性。目标优化:进一步优化奖励函数,考虑更的性能指标,如任务延迟、网络吞吐量和用户满意度等。实际应用验证:将所提算法应用于实际场景中,验证其在真实环境中的性能和效果。
03-10
### 基于深度强化学习无人机辅助边缘计算网络路径规划 #### 系统模型 在构建基于深度强化学习无人机辅助边缘计算网络路径规划系统时,该系统的架构通常由个部分组成。其中包括地面站、空中无人机节点以及云服务器或边缘服务器。每架无人机作为移动边缘计算设备,在飞行过程中收集数据并执行本地处理任务。为了提高效率和服务质量,无人机之间可以相互通信协作,并固定位置的地面上基础设施保持联系[^1]。 #### DDQN算法实现 针对此类复杂动态环境下最优解难以预先定义的问题,采用双延迟DQN (Double Delayed Deep Q-Network, DDQN) 来训练智能体以找到最佳行动方案。相比于传统的Q-learning方法,DDQN通过引入目标网络来稳定更新过程中的估计偏差问题;同时利用经验回放缓冲池存储历史交互样本用于离线重播训练,从而增强泛化能力。具体来说: ```python import torch.nn as nn class DDPG(nn.Module): def __init__(self, state_dim, action_dim): super(DDPG, self).__init__() # 定义神经网络结构 self.fc1 = nn.Linear(state_dim, 256) self.fc2 = nn.Linear(256, 128) self.out_layer = nn.Linear(128, action_dim) def forward(self, x): x = torch.relu(self.fc1(x)) x = torch.relu(self.fc2(x)) actions = torch.tanh(self.out_layer(x)) * MAX_ACTION return actions ``` 此代码片段展示了如何创建一个简单的深层神经网络来进行状态到动作映射的学习。实际应用中还需要考虑更细节如奖励函数设计、探索策略等。 #### 仿真结果和性能评估 实验结果显示,经过充分迭代后的DDQN能够有效提升UAV协同工作的整体表现。例如,在给定的任务场景下,相比随机游走或其他传统启发式搜索方式,所提出的框架可以在更短时间内完成指定区域内的全覆盖扫描工作,并且减少了不必要的能量消耗。此外,还验证了不同参数设置对于最终效果的影响程度,为进一步优化提供了理论依据。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值