【风电功率预测】【多变量输入单步预测】基于CNN-BiLSTM-Attention的风电功率预测研究(Matlab代码实现)

              💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

一、研究背景与意义

二、模型概述

1. CNN模块

2. BiLSTM模块

3. Attention模块

三、模型构建与训练

1. 数据处理

2. 模型结构

3. 训练与验证

四、优势与挑战

优势

挑战

五、结论与展望

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。当哲学课上老师问你什么是科学,什么是电的时候,不要觉得这些问题搞笑。哲学是科学之母,哲学就是追究终极问题,寻找那些不言自明只有小孩子会问的但是你却回答不出来的问题。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它居然给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于CNN-BiLSTM-Attention的风电功率预测研究在风电领域具有重要意义,因为它结合了卷积神经网络(CNN)、双向长短记忆网络(BiLSTM)和注意力机制(Attention)的优势,能够有效处理多变量输入并实现高精度的单步预测。以下是对该研究的详细分析:

一、研究背景与意义

风电功率预测是风电场运营和电网调度中的关键环节。由于风能的间歇性和波动性,准确预测风电功率对于提高风电场的发电效率、降低弃风率以及保障电网的稳定运行具有重要意义。传统的预测方法往往难以全面捕捉风电功率的复杂变化特性,而基于CNN-BiLSTM-Attention的预测模型则能够充分利用多源异构数据的时空相关性,实现高精度的预测。

二、模型概述

1. CNN模块
  • 功能:CNN模块主要用于从多源输入数据中提取时空特征。这些输入数据可能包括历史风电功率数据、风速、风向、温度、湿度等气象数据以及地理信息数据等。
  • 优势:通过卷积层和池化层的组合,CNN能够自动学习并提取输入数据的局部特征,为后续的预测提供丰富的特征信息。
2. BiLSTM模块
  • 功能:BiLSTM模块用于捕捉输入序列中的长期依赖关系。与传统的LSTM相比,BiLSTM能够同时处理正向和反向序列,从而更全面地利用序列中的前后信息。
  • 优势:BiLSTM通过引入两个LSTM层(一个正向,一个反向),能够更有效地捕捉时间序列数据中的双向依赖关系,提高预测的准确性。
3. Attention模块
  • 功能:Attention模块用于动态地分配权重给输入序列中的不同部分,使模型能够聚焦于对预测结果影响较大的关键信息。
  • 优势:通过引入注意力机制,模型能够更智能地处理输入数据,提高预测结果的鲁棒性和准确性。

三、模型构建与训练

1. 数据处理
  • 多变量输入:收集包括历史风电功率、风速、风向、温度、湿度等在内的多个变量作为输入数据。
  • 数据预处理:对数据进行清洗、去噪、归一化等预处理操作,以提高模型的学习效率和预测精度。
2. 模型结构
  • CNN层:设计适当的卷积层和池化层组合,以提取输入数据的时空特征。
  • BiLSTM层:将CNN提取的特征作为输入,构建BiLSTM层以捕捉时间序列中的长期依赖关系。
  • Attention层:在BiLSTM层后引入Attention层,对BiLSTM的输出进行加权处理,以突出关键信息。
  • 输出层:通过全连接层将Attention层的输出映射到预测的风电功率上。
3. 训练与验证
  • 训练:使用历史数据训练模型,通过反向传播算法优化模型参数。
  • 验证:通过交叉验证等技术评估模型性能,调整超参数以获得最佳预测效果。

四、优势与挑战

优势
  • 高精度预测:CNN-BiLSTM-Attention模型能够综合考虑多源数据的时空相关性和序列中的长期依赖关系,实现高精度的风电功率预测。
  • 适应性强:该模型具有较强的适应性和泛化能力,能够处理不同时间尺度和不同风电场的数据。
  • 鲁棒性好:通过引入注意力机制,模型能够更智能地处理输入数据中的噪声和异常值,提高预测结果的鲁棒性。
挑战
  • 数据质量:实际应用中数据可能存在缺失、噪声等问题,需要更先进的数据处理策略。
  • 模型复杂度:深度学习模型往往需要大量计算资源和较长的训练时间,优化模型结构和算法是未来研究的重点。
  • 不确定性处理:风能的自然特性导致预测结果存在不确定性,如何在模型中融入不确定性分析是一个研究前沿。

五、结论与展望

基于CNN-BiLSTM-Attention的风电功率预测研究为风电行业的发展提供了新的技术支持。未来,随着深度学习技术的不断发展和完善,该模型在风电功率预测领域的应用将更加广泛和深入。同时,针对现有挑战进行深入研究和技术创新,将进一步提高预测精度和实用性,为风电行业的可持续发展贡献力量。

📚2 运行结果

部分代码:

% 此函数可以实现多变量多步输入,和多变量单步输入
% 多变量多步输入时,将n_out设置成大于1的多步预测
% 多变量单步输入时,将n_out设置为1,表示预测未来一步。
% # 关于此函数怎么用,下面详细举例介绍:
% # 构造数据,这个函数可以实现单输入单输出,单输入多输出,多输入单输出,和多输入多输出。
% # 举个例子:
% # 假如原始数据为,其中务必使得数据前n-1列都为特征,最后一列为输出
% # [0.74    0.8    0.23 750.75
% # 0.74 0.87 0.15 716.94
% # 0.74 0.87 0.15 712.77
% # 0.74 0.8 0.15 684.86
% # 0.74 0.8 0.15 728.79
% # 0.72 0.87 0.08 742.81
% # 0.71 0.99 0.16 751.3]

% #(多输入多输出为例),假如n_in = 2,n_out=2,scroll_window=1
% # 输入前2行数据的特征,预测未来2个时刻的数据,滑动步长为1。
% # 使用此函数后,数据会变成:
% # 【0.74 0.8 0.23 750.75  0.74    0.87 0.15 716.94 712.77 684.86
% # 0.74 0.87 0.15 716.94 0.74 0.87    0.15 712.77  684.86 728.79
% # 0.74 0.87 0.15 712.77 0.74 0.8 0.15 684.86 728.79 742.81】

% # 假如n_in = 2,n_out=1,scroll_window=2
% # 输入前2行数据的特征,预测未来1个时刻的数据,滑动步长为2。
% # 使用此函数后,数据会变成:
% # 【0.74 0.8 0.23 750.75  0.74    0.87 0.15 716.94 712.77
% # 0.74 0.87    0.15 712.77  0.74 0.8 0.15 684.86 728.79
% # 0.74 0.8 0.15 728.79 0.72    0.87 0.08 742.81 751.3】


function  res = data_collation(values, n_in, n_out, or_dim, scroll_window, num_samples)
    for i = 1:num_samples
        h1 = values(1+scroll_window*(i-1): scroll_window*(i-1)+n_in,1:or_dim);
        res{i,1}= h1;
        h2 = values(scroll_window*(i-1)+n_in+1 : scroll_window*(i-1)+n_in+n_out,end);
        res{i,2} = h2;
      
    end
 end

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]张新生,贺凯璐.基于SSA-CNN的长距离矿浆管道临界流速预测[J].安全与环境学报, 2022.

[2]王华君,惠晶.基于CNN和LSSVM的人脸图像年龄估计方法[J].信息与电脑, 2017(7):3.DOI:10.3969/j.issn.1003-9767.2017.07.034.

[3]范高锋,王伟胜,刘纯,等.基于人工神经网络的风电功率预测[J].中国电机工程学报, 2008, 28(34):6.DOI:CNKI:SUN:ZGDC.0.2008-34-020.

[4]徐曼,乔颖,鲁宗相.短期风电功率预测误差综合评价方法[J].电力系统自动化, 2011.DOI:CNKI:SUN:DLXT.0.2011-12-005.

🌈4 Matlab代码、数据

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值