相机小孔成像模型(逐步推导详解)

先搞清楚为什么可以简化成小孔成像模型

相机小孔成像模型推导

原则:先简单后复杂,先理想后实际

[理想情况,相机无畸变]

一、明确四个坐标系:这个是推导的前提!

说明:
1、图像坐标系的坐标原点是成像平面的中心,相机坐标系原点设在光心处,空间中任意一点P可以用相机坐标系和世界坐标系表示。
2、相机坐标系原点和图像坐标系原点之间的距离可以用焦距 f 简化
3、标定的时候世界坐标系XY平面是标定板上表面,即Z=0的平面

二、坐标系转换:目标是推导出像素坐标系和世界坐标系的关系。

① 世界坐标系→相机坐标系
两个坐标系变换在空间上体现的是旋转加平移
表达成齐次坐标原因:https://blog.csdn.net/wangmj_hdu/article/details/119143771

② 相机坐标系→图像坐标系
根据小孔成像模型进行推导:

如图,空间点投影到XZ平面,根据相似三角形,可以得到以下等式:

同理y轴坐标 所以图像坐标系和相机坐标系转换关系: 统一成齐次坐标表达:

③ 图像坐标系→像素坐标系
图像坐标系的单位和像素坐标系的单位不同,所以转换需要进行缩放α,同时两个坐标系的位置也不同,需要进行平移

相应的坐标系转换:

同样,用齐次坐标表达成:

最后,大一统!
世界坐标系转换到像素坐标系:

统一成齐次坐标的优势就体现出来了,等式右边前两项可以合成一个矩阵,也就是相机内参矩阵A

标定就是把内参确定了,一个标定板设置一个世界坐标系,相应着对应一个外参RT矩阵
从公式可以看出,想要计算空间中一点坐标,需要像素坐标以及尺度因子Zc,单相机无法计算出三维点坐标!

[实际情况,相机存在安装误差以及畸变]

参考大佬:相机标定之张正友标定法数学原理详解(含python源码)

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值