OpenAI AI的应用研究主管Lilian Weng发布了关于AI Agents的《大语言模型(LLM)支持的自主代理》,在文章中她定义了基于LLM构建AI Agents的应用框架:Agent=LLM(大型语言模型)+记忆(Memory)+规划技能(Planning)+工具使用(Tool Use)。最近复旦大学自然语言处理组《大模型智能体》综述论文,提出了一个基于LLM的智能体的概念框架,包括三个主要组成部分:大脑、感知和行动
Abstract
长期以来,人类一直在追求相当于或超越人类水平的人工智能(AI),而人工智能代理被认为是实现这一追求的有前途的工具。人工智能代理是感知环境、做出决策并采取行动的人造实体。人们为开发智能代理做出了许多努力,但它们主要集中在算法或训练策略的进步,以增强特定任务的特定能力或性能。事实上,社区缺乏的是一个通用且强大的模型来作为设计能够适应不同场景的人工智能代理的起点。由于它们所展示的多功能能力,大语言模型(LLM)被认为是通用人工智能(AGI)的潜在火花,为构建通用人工智能代理带来了希望。许多研究人员利用LLM作为构建人工智能代理的基础,并取得了重大进展。在本文中,我们对LLM Agent进行了全面调研。我们首先追溯agent的概念,从其哲学起源到人工智能的发展,并解释为什么LLM是智能体的合适基础。在此基础上,我们提出了一个基于 LLM 的代理的通用框架,包括三个主要组件:大脑、感知和行动,并且该框架可以针对不同的应用进行定制。随后,我们探讨了基于LLM的智能体在单智能体场景、多智能体场景和人类智能体协作三个方面的广泛应用。接下来,我们深入研究代理人社会,探讨LLM Agent的行为和个性,代理人社会中出现的社会现象,以及他们为人类社会提供的见解。最后,我们讨论了该领域内的几个关键主题和未解决的问题。相关论文的存储库位于 https://github.com/WooooDyy/LLM-Agent-Paper-List。