前言
AI Agent(智能体)被定义为能够感知环境、做出决策并采取行动的人工智能实体。受美国汽车工程师学会(SAE)提出的自动驾驶六个级别启发,在论文 《Levels of AI Agents: from Rules to Large Language Models》 中,作者把人工智能智能体也基于效用和强度分为以下级别:
-
L0—— 无人工智能,只有工具(具备感知能力)加上行动
-
L1—— 使用基于规则的人工智能
-
L2—— 用基于模仿学习(IL)/ 强化学习(RL)的人工智能替代基于规则的人工智能,并增加推理和决策功能
-
L3—— 用基于大型语言模型(LLM)的人工智能替代基于 IL/RL 的人工智能,另外设置记忆和反思模块
-
L4—— 在 L3 的基础上,促进自主学习和泛化
-
L5—— 在 L4 的基础上,添加个性(情感 + 性格)和协作行为(多智能体)
可以把AI Agents的五个能力级别用下图来表示,我们来对这张图做简单理解:
图中展示了AI智能体的五个级别,并从不同的维度对不同级别AI智能体的能力与性能进行了定义与描述。图表从左至右详细说明了每个级别的技术手段、性能、能力、关键特性、使用案例、以及领域的应用情况。
以下是对每个级别的简单分析和理解:
Level 0: No AI (无AI)
-
技术手段:无AI,仅基于简单的规则和操作。
-
性能:无AI,无法执行智能行为。
-
能力:无AI能力,仅执行预定义的规则和操作。
-
关键特性:无智能行为,没有自主决策能力,完全依赖于预定义的规则。
-
用例场景:无。
Level 1: Rule-Based AI + Tools (基于规则的AI + 工具)
-
技术手段:基于规则的AI与工具组合,完成简单的步骤序列。
-
性能:等同于未具备技能的初级人类。
-
能力:仅能执行按照明确步骤设定的任务。
-
关键特性:遵循预定义规则完成任务,缺乏应对变化的能力。
-
用例场景:例如使用语音助手来执行特定指令(如打开应用或读邮件)。
Level 2: IL/RL-Based AI + Tools (基于监督学习/强化学习的AI + 工具)
-
技术手段:通过监督学习和强化学习驱动,带有推理和决策能力。
-
性能:等同于具备50%技能的成年人。
-
能力:能够在用户定义的任务范围内进行推理和执行决策。
-
关键特性:可以在特定的领域中,通过数据反馈进行自动调整和改进,但范围有限。
-
用例场景:例如天气查询、简单的对话式AI,可以根据输入完成预定任务
Level 3: LLM-Based AI + Tools (基于大型语言模型的AI + 工具)
-
技术手段:基于大型语言模型(LLM),具备意图、行动、推理、决策、记忆与反思的能力。
-
性能:等同于具备90%技能的成年人。
-
能力:具备自动化任务的战略能力,可以通过工具自动规划任务并根据反馈调整执行步骤。
-
关键特性:在用户定义的任务下,能够自主完成复杂任务,具备较强的推理能力和记忆能力。
-
用例场景:AI能够自主规划并执行任务,例如通过多轮对话完成复杂的用户需求。
Level 4: LLM-Based AI + Tools + Autonomous Learning**(基于大型语言模型的AI + 工具,自主学习与泛化)**
-
技术手段:基于LLM和工具,具备自我学习、泛化和推理能力,记忆与反思进一步增强。
-
性能:等同于99%技能的成年人,接近人类顶尖专家的水平。
-
能力:能够通过上下文感知,提供高度个性化的服务,主动满足用户需求。
-
关键特性:具备深度理解和记忆功能,可以在复杂环境中提供最优解决方案或服务。
-
用例场景:个性化虚拟助手能够根据用户需求主动调整和优化行为。
Level 5: Superhuman AI (超人类AI)
-
技术手段:基于LLM与多智能体协作的AI,具备超越人类的推理、记忆、反思、自主学习和决策能力,情感、个性与协作能力也进一步发展。
-
性能:超越100%技能的成年人,展现出超人类智能。
-
能力:具备真正的数字化人格,能够在人类的角色中执行任务,确保安全与可靠性。
-
关键特性:AI能够在复杂的社交环境中代表用户完成任务,并与他人交互。
-
使用案例:能够代替用户进行交互,安全且可靠地完成复杂任务。
这里展示了AI智能体的五个级别,从最基础的规则驱动系统到潜在的超级智能,逐步提升了AI的能力和应用范围。每个级别的性能与功能均依赖于不同的技术手段,展示了AI逐渐从简单的任务自动化向复杂的、自主学习的系统发展。
本文参考:
论文:《Levels of AI Agents: from Rules to Large Language Models》
作者:Yu Huang, Roboraction.AI
链接:https://arxiv.org/pdf/2405.06643
最后的最后
感谢你们的阅读和喜欢,我收藏了很多技术干货,可以共享给喜欢我文章的朋友们,如果你肯花时间沉下心去学习,它们一定能帮到你。
因为这个行业不同于其他行业,知识体系实在是过于庞大,知识更新也非常快。作为一个普通人,无法全部学完,所以我们在提升技术的时候,首先需要明确一个目标,然后制定好完整的计划,同时找到好的学习方法,这样才能更快的提升自己。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】

大模型知识脑图
为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
经典书籍阅读
阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。
实战案例
光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
面试资料
我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下
640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
