【项目实战】YOLOV5 +实时吸烟目标检测+手把手教学+开源全部

本文介绍了一个使用YOLOV5进行实时吸烟行为检测的原创项目,包括环境配置、数据标注、训练过程和实时检测。提供了数据集、标注工具和训练教程,并展示了训练效果。项目资源可在GitHub上获取,作者还分享了其他相关数据集。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本原创项目长期更新,旨在完成校园异常行为实时精检测,做到集成+N次开发+优化(不止局限于调包)为止,近期将不断更新以下模型+数据+标注文件+教程。关注博主,Star 一下github,一起开始美妙的目标检测之路吧~~

​ 首先:附上Github传送门:https://github.com/CVUsers/Smoke-Detect-by-YoloV5/tree/master,然后根据本文手把手配置环境+训练自己数据,或者使用我训练好的模型进行使用。用yolov5s训练好的已经放在了里面,用大模型训练的由于大小原因,需要的话可以戳最下方微信私聊我,免费。

写在前面

本人今日开通了个人公众号:DeepAI 视界 分享人工智能领域各种前沿算法,以及最稀缺的深度学习训练数据,还有很多标注好的数据哟!是不是心动了,赶紧关注吧!干货就在下面

yolov5是一种流行的目标检测算法,它的主要思想是通过深度学习模型实现实时目标检测。如果我们想要使用yolov5进行实时吸烟目标检测,我们可以按照以下步骤进行。 首先,我们需要收集大量的吸烟图片数据集,并为每个图像标记吸烟目标的边界框和类别标签。这些数据将用于训练我们的yolov5模型。 然后,我们将收集并标记的数据集划分为训练集和测试集。用于训练的数据集将用于调整yolov5模型的参数,使其能够准确地检测吸烟目标。测试集用于评估模型在未见过数据上的性能表现。 接下来,我们使用yolov5的训练脚本来训练我们的模型。该脚本会加载我们划分好的训练集,并根据训练集中的标记信息来调整模型的参数。训练过程可能需要一些时间,取决于数据集的大小以及计算资源的能力。 训练完成后,我们可以使用训练好的yolov5模型来实时检测吸烟目标。我们将模型应用于摄像头或视频流中的每一帧图像,检测吸烟目标的位置和类别,并将其标记出来。 最后,我们可以根据我们的需求对检测结果进行后处理,比如过滤掉置信度较低的检测框或使用跟踪算法来跟踪吸烟目标的运动。这样就可以实现实时吸烟目标检测。 总结来说,通过使用yolov5算法,我们可以训练一个能够实时检测吸烟目标的深度学习模型。这个模型可以在摄像头或视频流中实时检测吸烟目标的位置和类别,为吸烟行为监控和管理提供有力的工具。
评论 238
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

cv君

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值