【学习】傅里叶变换分析与理解

傅里叶级数的本质是将一个周期的信号分解成无限多分开的(离散的)正弦波,但是宇宙似乎并不是周期的。

理解频域、空域(时域)

![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/6577a546c34d47fda7bd9e568078feb7.png
时域(空域)是从时间方向看过去的得到的图像,而频域是从频率方向看过去得到的图像。
详细的参考一篇知乎博文:傅里叶分析之掐死教程(完整版)

对于傅里叶变换在深度学习中的使用,只需要关注以下几点:

我们可以通过傅里叶变换,将空域变换到频域,在频域中可以很简单的抽出其中一个频率,从而达到滤波的效果。但在时域中,滤波却很困难。这便是傅里叶变换的意义所在吧。

傅里叶变换的作用

  • 高频: 图像中变化剧烈的灰度分量,例如边界。
  • 低频: 图像中变化缓慢的灰度分量,例如—片海。

滤波

  • 低通滤波器:只保留低频,会使得图像模糊。
  • 高通滤波器:只保留高频,会使得图像细节增强。
  • . opencv中主要就是cv2.dft()和cv2.idft(),输入图像需要先转换成np.float32格式。cv2.dft() 函数用于进行离散傅里叶变换(DFT),它是将时域信号转换到频域的一种数学工具。cv2.idft()函数用于进行逆离散傅里叶变换(IDFT),它是将频域信号转换回时域的过程的一种数学工具。
  • 得到的结果中频率为0的部分会在左上角,通常要转换到中心位置,可以通过shift变换来实现。.Cv2.dft()返回的结果是双通道的(实部,虚部),通常还需要转换成图像格式才能展示(0.255).
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

超好的小白

没体验过打赏,能让我体验一次吗

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值