吴恩达机器学习笔记 1单变量线性回归

机器学习

(小白通俗理解)

机器学习包括监督学习无监督学习

监督学习 首先,监督学习,我们所给的数据集由正确答案组成,计算机根据正确数据集对未知样本进行结果预测 无监督学习 无监督学习,所给数据集并没有正确答案,计算机会自己给数据进行分析分类,将数据分成不同的簇,因而常涉及聚类算法

实例:预测房价,通过已有数据集(包含有该市的住房价格),我们根据不同的房屋尺寸的价格来建造数据模型,预测得到所需要的大概价格,这是一个回归问题
在这里插入图片描述

课程中自定义字母含义
m:训练样本的数量
x:输入变量或者特征
y:表示输出变量即训练的目标变量
(x,y):表示一个训练样本
(x(i),y(i)):表示特定训练样本,上标i表数据集索引,表格中第i行
h:一个假设函数,给出x,h作为引导输出y
:=表赋值运算符 =表示真假判定
3.基础模型,线性回归(单变量线性回归)
线性假设函数
h表示一个函数,x是房屋尺寸的大小,根据输入所要预测的房屋尺寸x来得到y值,因此表示为
h θ = θ 0 + θ 1 x h_\theta=\theta_0+\theta_1x hθ=θ0+θ1x
只有一个变量,故称为单变量线性回归问题

4.代价函数(又称平方误差函数)
我们的目标是根据已有的x,y拟合出一个函数,使所得函数可以更准确的预测给定x下的y值,即寻求对应的 θ 0 \theta_0 θ0 θ 1 \theta_1 θ1,使得所得预测值与实际值误差的平方最小
因而问题转化为求解代价函数
m i n i m i z e θ 0 θ 1 = 1 2 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 minimize\theta_0\theta_1=\frac{1}{2m}\sum_{i=1}^{m}(h_\theta(x^{(i)})-y^{(i)})^2 minimizeθ0θ1=2m1i=1m(hθ(x(i))y(i))2

J ( θ 0 , θ 1 ) = 1 2 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) 2 J(\theta_0,\theta_1)=\frac{1}{2m}\sum_{i=1}^{m}(h_\theta(x^{(i)})-y^{(i)})^2 J(θ0,θ1)=2m1i=1m(hθ(x(i))y(i))2
即为求 θ 0 \theta_0 θ0 θ 1 \theta_1 θ1,使 m i n i m i z e J ( θ 0 , θ 1 ) minimizeJ(\theta_0,\theta_1) minimizeJ(θ0,θ1)

代价函数又称为平方误差函数,有时也被称为平方误差代价函数。平方误差代价函数,对于大多数问题,特别是回归问题,都有一个合理的选择,其他的代价函数也会有很好的作用,但是平方误差代价函数是解决回归问题的最常用手段。

5.梯度下降算法 (gradient descent algorithm)(可以用来最小化任何代价函数)又叫"batch"gradient descent定义:

思想:开始随机选择参数组合,计算代价函数,然后寻找能让代价函数值下降最多的参数集合,持续做直到得到局部最小值。由于没有尝试所有参数组合,故不能确定所得局部最小值是否为全局最小值。

在这里插入图片描述
在这里插入图片描述

方法:重复直到收敛(repeat until convergence)
θ j : = θ j − α δ δ θ j J ( θ 0 , θ 1 ) \theta_j:=\theta_j-\alpha\frac{\delta}{\delta\theta_j}J(\theta_0,\theta_1) θj:=θjαδθjδJ(θ0,θ1) (for j=0 and j=1)
α \alpha α是一个被称为学习率的数字

学习率决定代价函数下降程度最大的方向向下迈出的步子有多大,每一次更新都同时让所有的参数减去学习率乘以代价函数的导数

注意要同步更新(simultaneous update)
t e m p 0 : = θ 0 − α δ δ θ 0 J ( θ 0 , θ 1 ) temp0:=\theta_0-\alpha\frac{\delta}{\delta\theta_0}J(\theta_0,\theta_1) temp0:=θ0αδθ0δJ(θ0,θ1)
t e m p 1 : = θ 1 − α δ δ θ 1 J ( θ 0 , θ 1 ) temp1:=\theta_1-\alpha\frac{\delta}{\delta\theta_1}J(\theta_0,\theta_1) temp1:=θ1αδθ1δJ(θ0,θ1)
θ 0 : = t e m p 0 \theta_0:=temp0 θ0:=temp0
θ 1 : = t e m p 1 \theta_1:=temp1 θ1:=temp1
(注意顺序必须是这样,否则做不到同步如:
t e m p 0 : = θ 0 − α δ δ θ 0 J ( θ 0 , θ 1 ) temp0:=\theta_0-\alpha\frac{\delta}{\delta\theta_0}J(\theta_0,\theta_1) temp0:=θ0αδθ0δJ(θ0,θ1)
θ 0 : = t e m p 0 \theta_0:=temp0 θ0:=temp0 这里将 θ 0 \theta_0 θ0更新后,下面更新 θ 1 \theta_1 θ1式子里的 θ 0 \theta_0 θ0已经变化,因此做不到同步更新
t e m p 1 : = θ 1 − α δ δ θ 1 J ( θ 0 , θ 1 ) temp1:=\theta_1-\alpha\frac{\delta}{\delta\theta_1}J(\theta_0,\theta_1) temp1:=θ1αδθ1δJ(θ0,θ1)
θ 1 : = t e m p 1 \theta_1:=temp1 θ1:=temp1)

6.第一个机器学习算法(梯度下降的线性回归算法)
现在将梯度下降算法应用于线性回归去最小化平方差代价函数
对于线性回归的平方差代价函数(即对该代价函数求偏导数进一步化简得如下)
θ 0 : = θ 0 − α 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) \theta_0:=\theta_0-\alpha\frac{1}{m}\sum_{i=1}^{m}(h_\theta(x^{(i)})-y^{(i)}) θ0:=θ0αm1i=1m(hθ(x(i))y(i))
θ 1 : = θ 1 − α 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) \theta_1:=\theta_1-\alpha\frac{1}{m}\sum_{i=1}^{m}(h_\theta(x^{(i)})-y^{(i)}) θ1:=θ1αm1i=1m(hθ(x(i))y(i))

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值