(四)学习笔记:动手学深度学习(线性代数)

在这篇文章中我们将介绍线性代数中的基本数学对象、算术和运算,并用数学符号和相应的代码实现来表示它们。


1.1标量

(标量由只有一个元素的张量表示)。
在下面的代码中,我们实例化两个标量,并执行一些熟悉的算术运算,即加法、乘法、除法和指数。

import torch

x = torch.tensor(3.0)
y = torch.tensor(2.0)

x + y, x * y, x / y, x**y
(tensor(5.), tensor(6.), tensor(1.5000), tensor(9.))

1.2向量

[你可以将向量视为标量值组成的列表]。

我们通过一维张量处理向量。一般来说,张量可以具有任意长度,取决于机器的内存限制。

x = torch.arange(4)
x
tensor([0, 1, 2, 3])

在数学中,向量 x \mathbf{x} x可以写为:

x = [ x 1 x 2 ⋮ x n ] , \mathbf{x} =\begin{bmatrix}x_{1} \\x_{2} \\ \vdots \\x_{n}\end{bmatrix}, x=x1x2xn,

其中 x 1 , … , x n x_1,\ldots,x_n x1,,xn是向量的元素。在代码中,我们(通过张量的索引来访问任一元素)。

x[3]
tensor(3)

1.2.1长度、维度和形状

[访问张量的长度]。

len(x)
4

(只有一个轴的张量,形状只有一个元素。)

x.shape
torch.Size([4])

维度(dimension)这个词在不同上下文时往往会有不同的含义
向量的维度被用来表示向量的长度,即向量或轴的元素数量。
张量的维度用来表示张量具有的轴数。
在这个意义上,张量的某个轴的维数就是这个轴的长度

1.3矩阵

在数学表示法中,我们使用 A ∈ R m × n \mathbf{A} \in \mathbb{R}^{m \times n} ARm×n
来表示矩阵 A \mathbf{A} A,其由 m m m行和 n n n列的实值标量组成。
我们可以将任意矩阵 A ∈ R m × n \mathbf{A} \in \mathbb{R}^{m \times n} ARm×n视为一个表格,
其中每个元素 a i j a_{ij} aij属于第 i i i行第 j j j列:

A = [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m n ] . \mathbf{A}=\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \\ \end{bmatrix}. A=a11a21am1a12a22am2a1na2namn.

对于任意 A ∈ R m × n \mathbf{A} \in \mathbb{R}^{m \times n} ARm×n
A \mathbf{A} A的形状是( m m m, n n n)或 m × n m \times n m×n
当矩阵具有相同数量的行和列时,其形状将变为正方形;
因此,它被称为方阵(square matrix)。

1.3.1通过指定两个分量 m m m n n n来创建一个形状为 m × n m \times n m×n的矩阵

A = torch.arange(20).reshape(5, 4)
A
tensor([[ 0,  1,  2,  3],
        [ 4,  5,  6,  7],
        [ 8,  9, 10, 11],
        [12, 13, 14, 15],
        [16, 17, 18, 19]])

当我们交换矩阵的行和列时,结果称为矩阵的转置(transpose)。
我们用 a ⊤ \mathbf{a}^\top a来表示矩阵的转置,如果 B = A ⊤ \mathbf{B}=\mathbf{A}^\top B=A
则对于任意 i i i j j j,都有 b i j = a j i b_{ij}=a_{ji} bij=aji

A ⊤ = [ a 11 a 21 … a m 1 a 12 a 22 … a m 2 ⋮ ⋮ ⋱ ⋮ a 1 n a 2 n … a m n ] . \mathbf{A}^\top = \begin{bmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \dots & a_{mn} \end{bmatrix}. A=a11a12a1na21a22a2nam1am2amn.

1.3.2 矩阵的转置

A.T
tensor([[ 0,  4,  8, 12, 16],
        [ 1,  5,  9, 13, 17],
        [ 2,  6, 10, 14, 18],
        [ 3,  7, 11, 15, 19]])

作为方阵的一种特殊类型,[对称矩阵(symmetric matrix) A \mathbf{A} A等于其转置: A = A ⊤ \mathbf{A} = \mathbf{A}^\top A=A]。
这里我们定义一个对称矩阵 B \mathbf{B} B

B = torch.tensor([[1, 2, 3], [2, 0, 4], [3, 4, 5]])
B
tensor([[1, 2, 3],
        [2, 0, 4],
        [3, 4, 5]])

现在我们将B与它的转置进行比较。

B == B.T
tensor([[True, True, True],
        [True, True, True],
        [True, True, True]])

1.4 张量

[就像向量是标量的推广,矩阵是向量的推广一样,我们可以构建具有更多轴的数据结构]。
张量为我们提供了描述具有任意数量轴的 n n n维数组的通用方法。
例如,向量是一阶张量,矩阵是二阶张量。

当我们开始处理图像时,张量将变得更加重要,图像以 n n n维数组形式出现,
其中3个轴对应于高度、宽度,以及一个通道(channel)轴,
用于表示颜色通道(红色、绿色和蓝色)。

X = torch.arange(24).reshape(2, 3, 4)
X
tensor([[[ 0,  1,  2,  3],
         [ 4,  5,  6,  7],
         [ 8,  9, 10, 11]],

        [[12, 13, 14, 15],
         [16, 17, 18, 19],
         [20, 21, 22, 23]]])

1.5张量算法的基本性质

1.5.1给定具有相同形状的任意两个张量,任何按元素二元运算的结果都将是相同形状的张量

例如,将两个相同形状的矩阵相加,会在这两个矩阵上执行元素加法。

A = torch.arange(20, dtype=torch.float32).reshape(5, 4)
B = A.clone()  # 通过分配新内存,将A的一个副本分配给B
A, A + B
(tensor([[ 0.,  1.,  2.,  3.],
         [ 4.,  5.,  6.,  7.],
         [ 8.,  9., 10., 11.],
         [12., 13., 14., 15.],
         [16., 17., 18., 19.]]),
 tensor([[ 0.,  2.,  4.,  6.],
         [ 8., 10., 12., 14.],
         [16., 18., 20., 22.],
         [24., 26., 28., 30.],
         [32., 34., 36., 38.]]))

1.5.2矩阵按元素相乘

[两个矩阵的按元素乘法称为Hadamard积(Hadamard product)(数学符号 ⊙ \odot ]。
对于矩阵 B ∈ R m × n \mathbf{B} \in \mathbb{R}^{m \times n} BRm×n
其中第 i i i行和第 j j j列的元素是 b i j b_{ij} bij
矩阵 A \mathbf{A} A B \mathbf{B} B的Hadamard积为:

A ⊙ B = [ a 11 b 11 a 12 b 12 … a 1 n b 1 n a 21 b 21 a 22 b 22 … a 2 n b 2 n ⋮ ⋮ ⋱ ⋮ a m 1 b m 1 a m 2 b m 2 … a m n b m n ] . \mathbf{A} \odot \mathbf{B} = \begin{bmatrix} a_{11} b_{11} & a_{12} b_{12} & \dots & a_{1n} b_{1n} \\ a_{21} b_{21} & a_{22} b_{22} & \dots & a_{2n} b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} b_{m1} & a_{m2} b_{m2} & \dots & a_{mn} b_{mn} \end{bmatrix}. AB=a11b11a21b21am1bm1a12b12a22b22am2bm2a1nb1na2nb2namnbmn.

A * B
tensor([[  0.,   1.,   4.,   9.],
        [ 16.,  25.,  36.,  49.],
        [ 64.,  81., 100., 121.],
        [144., 169., 196., 225.],
        [256., 289., 324., 361.]])

1.5.2矩阵与标量相乘

将张量乘以或加上一个标量不会改变张量的形状,其中张量的每个元素都将与标量相加或相乘。

a = 2
X = torch.arange(24).reshape(2, 3, 4)
a + X, (a * X).shape
(tensor([[[ 2,  3,  4,  5],
          [ 6,  7,  8,  9],
          [10, 11, 12, 13]],
 
         [[14, 15, 16, 17],
          [18, 19, 20, 21],
          [22, 23, 24, 25]]]),
 torch.Size([2, 3, 4]))

1.6 降维

1.6.1 计算其元素的和

在数学表示法中,我们使用 ∑ \sum 符号表示求和。
为了表示长度为 d d d的向量中元素的总和,可以记为 ∑ i = 1 d x i \sum_{i=1}^dx_i i=1dxi
在代码中,我们可以调用计算求和的函数:

x = torch.arange(4, dtype=torch.float32)
x, x.sum()
(tensor([0., 1., 2., 3.]), tensor(6.))

我们可以(表示任意形状张量的元素和)。
例如,矩阵 A \mathbf{A} A中元素的和可以记为 ∑ i = 1 m ∑ j = 1 n a i j \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} i=1mj=1naij

A.shape, A.sum()
(torch.Size([5, 4]), tensor(190.))

默认情况下,调用求和函数会沿所有的轴降低张量的维度,使它变为一个标量。

1.6.2 指定张量沿哪一个轴来通过求和降低维度

以矩阵为例
指定axis=0将通过求和所有行的元素来降维(轴0)。因此输入轴0的维数在输出形状中消失。

A_sum_axis0 = A.sum(axis=0)
A_sum_axis0, A_sum_axis0.shape
(tensor([40., 45., 50., 55.]), torch.Size([4]))

指定axis=1将通过汇总所有列的元素降维(轴1)。因此,输入轴1的维数在输出形状中消失。

A_sum_axis1 = A.sum(axis=1)
A_sum_axis1, A_sum_axis1.shape
(tensor([ 6., 22., 38., 54., 70.]), torch.Size([5]))

沿着行和列对矩阵求和,等价于对矩阵的所有元素进行求和。

A.sum(axis=[0, 1])  # Same as `A.sum()`
tensor(190.)

[一个与求和相关的量是平均值(mean或average)]。
我们通过将总和除以元素总数来计算平均值。
在代码中,我们可以调用函数来计算任意形状张量的平均值。

A.mean(), A.sum() / A.numel()
(tensor(9.5000), tensor(9.5000))

同样,计算平均值的函数也可以沿指定轴降低张量的维度。

A.mean(axis=0), A.sum(axis=0) / A.shape[0]
(tensor([ 8.,  9., 10., 11.]), tensor([ 8.,  9., 10., 11.]))

1.7非降维求和

在调用函数来[计算总和或均值时保持轴数不变]会很有用。

sum_A = A.sum(axis=1, keepdims=True)
sum_A
tensor([[ 6.],
        [22.],
        [38.],
        [54.],
        [70.]])

例如,由于sum_A在对每行进行求和后仍保持两个轴,我们可以(通过广播将A除以sum_A)。

A / sum_A
tensor([[0.0000, 0.1667, 0.3333, 0.5000],
        [0.1818, 0.2273, 0.2727, 0.3182],
        [0.2105, 0.2368, 0.2632, 0.2895],
        [0.2222, 0.2407, 0.2593, 0.2778],
        [0.2286, 0.2429, 0.2571, 0.2714]])

如果我们想沿[某个轴计算A元素的累积总和],
比如axis=0(按行计算),我们可以调用cumsum函数。
此函数不会沿任何轴降低输入张量的维度。

A.cumsum(axis=0)
tensor([[ 0.,  1.,  2.,  3.],
        [ 4.,  6.,  8., 10.],
        [12., 15., 18., 21.],
        [24., 28., 32., 36.],
        [40., 45., 50., 55.]])

1.8点积(Dot Product)

给定两个向量 x , y ∈ R d \mathbf{x},\mathbf{y}\in\mathbb{R}^d x,yRd,它们的点积(dot product) x ⊤ y \mathbf{x}^\top\mathbf{y} xy(或 ⟨ x , y ⟩ \langle\mathbf{x},\mathbf{y}\rangle x,y)是相同位置的按元素乘积的和: x ⊤ y = ∑ i = 1 d x i y i \mathbf{x}^\top \mathbf{y} = \sum_{i=1}^{d} x_i y_i xy=i=1dxiyi

x = torch.arange(4, dtype=torch.float32)
y = torch.ones(4, dtype = torch.float32)
x, y, torch.dot(x, y)
(tensor([0., 1., 2., 3.]), tensor([1., 1., 1., 1.]), tensor(6.))

注意,(我们可以通过执行按元素乘法,然后进行求和来表示两个向量的点积):

torch.sum(x * y)
tensor(6.)

1.9矩阵-向量积

矩阵 A ∈ R m × n \mathbf{A} \in \mathbb{R}^{m \times n} ARm×n和向量 x ∈ R n \mathbf{x} \in \mathbb{R}^n xRn
让我们将矩阵 A \mathbf{A} A用它的行向量表示:

A = [ a 1 ⊤ a 2 ⊤ ⋮ a m ⊤ ] , \mathbf{A}= \begin{bmatrix} \mathbf{a}^\top_{1} \\ \mathbf{a}^\top_{2} \\ \vdots \\ \mathbf{a}^\top_m \\ \end{bmatrix}, A=a1a2am,

其中每个 a i ⊤ ∈ R n \mathbf{a}^\top_{i} \in \mathbb{R}^n aiRn都是行向量,表示矩阵的第 i i i行。
[矩阵向量积 A x \mathbf{A}\mathbf{x} Ax是一个长度为 m m m的列向量,
其第 i i i个元素是点积 a i ⊤ x \mathbf{a}^\top_i \mathbf{x} aix
]:

A = [ a 1 ⊤ a 2 ⊤ ⋮ a m ⊤ ] A x = [ a 1 ⊤ x a 2 ⊤ x ⋮ a m ⊤ x ] . \mathbf{A} = \begin{bmatrix} \mathbf{a}^\top_{1} \\ \mathbf{a}^\top_{2} \\ \vdots \\ \mathbf{a}^\top_m \\ \end{bmatrix}\mathbf{Ax} = \begin{bmatrix} \mathbf{a}^\top_{1} \mathbf{x} \\ \mathbf{a}^\top_{2} \mathbf{x} \\ \vdots\\ \mathbf{a}^\top_{m} \mathbf{x}\\ \end{bmatrix}. A=a1a2amAx=a1xa2xamx.

我们可以把一个矩阵 A ∈ R m × n \mathbf{A} \in \mathbb{R}^{m \times n} ARm×n乘法看作是一个从 R n \mathbb{R}^{n} Rn R m \mathbb{R}^{m} Rm向量的转换。
这些转换是非常有用的。例如,我们可以用方阵的乘法来表示旋转。

在代码中使用张量表示矩阵-向量积,我们使用与点积相同的mv函数。
当我们为矩阵A和向量x调用torch.mv(A, x)时,会执行矩阵-向量积。
注意A的列维数(沿轴1的长度)必须与x的维数(其长度)相同。

A.shape, x.shape, torch.mv(A, x)
(torch.Size([5, 4]), torch.Size([4]), tensor([ 14.,  38.,  62.,  86., 110.]))

1.10 矩阵-矩阵乘法

在这里插入图片描述

假设我们有两个矩阵 A ∈ R n × k \mathbf{A} \in \mathbb{R}^{n \times k} ARn×k B ∈ R k × m \mathbf{B} \in \mathbb{R}^{k \times m} BRk×m

A = [ a 11 a 12 ⋯ a 1 k a 21 a 22 ⋯ a 2 k ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n k ] , B = [ b 11 b 12 ⋯ b 1 m b 21 b 22 ⋯ b 2 m ⋮ ⋮ ⋱ ⋮ b k 1 b k 2 ⋯ b k m ] . \mathbf{A}=\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1k} \\ a_{21} & a_{22} & \cdots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nk} \\ \end{bmatrix},\quad \mathbf{B}=\begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1m} \\ b_{21} & b_{22} & \cdots & b_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ b_{k1} & b_{k2} & \cdots & b_{km} \\ \end{bmatrix}. A=a11a21an1a12a22an2a1ka2kank,B=b11b21bk1b12b22bk2b1mb2mbkm.

用行向量 a i ⊤ ∈ R k \mathbf{a}^\top_{i} \in \mathbb{R}^k aiRk表示矩阵 A \mathbf{A} A的第 i i i行,并让列向量 b j ∈ R k \mathbf{b}_{j} \in \mathbb{R}^k bjRk作为矩阵 B \mathbf{B} B的第 j j j列。要生成矩阵积 C = A B \mathbf{C} = \mathbf{A}\mathbf{B} C=AB,最简单的方法是考虑 A \mathbf{A} A的行向量和 B \mathbf{B} B的列向量:

A = [ a 1 ⊤ a 2 ⊤ ⋮ a n ⊤ ] , B = [ b 1 b 2 ⋯ b m ] . \mathbf{A}= \begin{bmatrix} \mathbf{a}^\top_{1} \\ \mathbf{a}^\top_{2} \\ \vdots \\ \mathbf{a}^\top_n \\ \end{bmatrix}, \quad \mathbf{B}=\begin{bmatrix} \mathbf{b}_{1} & \mathbf{b}_{2} & \cdots & \mathbf{b}_{m} \\ \end{bmatrix}. A=a1a2an,B=[b1b2bm].

当我们简单地将每个元素 c i j c_{ij} cij计算为点积 a i ⊤ b j \mathbf{a}^\top_i \mathbf{b}_j aibj:

C = A B = [ a 1 ⊤ a 2 ⊤ ⋮ a n ⊤ ] [ b 1 b 2 ⋯ b m ] = [ a 1 ⊤ b 1 a 1 ⊤ b 2 ⋯ a 1 ⊤ b m a 2 ⊤ b 1 a 2 ⊤ b 2 ⋯ a 2 ⊤ b m ⋮ ⋮ ⋱ ⋮ a n ⊤ b 1 a n ⊤ b 2 ⋯ a n ⊤ b m ] . \mathbf{C} = \mathbf{AB} = \begin{bmatrix} \mathbf{a}^\top_{1} \\ \mathbf{a}^\top_{2} \\ \vdots \\ \mathbf{a}^\top_n \\ \end{bmatrix} \begin{bmatrix} \mathbf{b}_{1} & \mathbf{b}_{2} & \cdots & \mathbf{b}_{m} \\ \end{bmatrix} = \begin{bmatrix} \mathbf{a}^\top_{1} \mathbf{b}_1 & \mathbf{a}^\top_{1}\mathbf{b}_2& \cdots & \mathbf{a}^\top_{1} \mathbf{b}_m \\ \mathbf{a}^\top_{2}\mathbf{b}_1 & \mathbf{a}^\top_{2} \mathbf{b}_2 & \cdots & \mathbf{a}^\top_{2} \mathbf{b}_m \\ \vdots & \vdots & \ddots &\vdots\\ \mathbf{a}^\top_{n} \mathbf{b}_1 & \mathbf{a}^\top_{n}\mathbf{b}_2& \cdots& \mathbf{a}^\top_{n} \mathbf{b}_m \end{bmatrix}. C=AB=a1a2an[b1b2bm]=a1b1a2b1anb1a1b2a2b2anb2a1bma2bmanbm.

[我们可以将矩阵-矩阵乘法 A B \mathbf{AB} AB看作是简单地执行 m m m次矩阵-向量积,并将结果拼接在一起,形成一个 n × m n \times m n×m矩阵]。
在下面的代码中,我们在AB上执行矩阵乘法。
这里的A是一个5行4列的矩阵,B是一个4行3列的矩阵。
两者相乘后,我们得到了一个5行3列的矩阵。

B = torch.ones(4, 3)
torch.mm(A, B)
tensor([[ 6.,  6.,  6.],
        [22., 22., 22.],
        [38., 38., 38.],
        [54., 54., 54.],
        [70., 70., 70.]])

矩阵-矩阵乘法可以简单地称为矩阵乘法,不应与"Hadamard积"混淆。

1.11范数

在线性代数中,向量范数是将向量映射到标量的函数 f f f
给定任意向量 x \mathbf{x} x,向量范数要满足一些属性。
第一个性质是:如果我们按常数因子 α \alpha α缩放向量的所有元素,
其范数也会按相同常数因子的绝对值缩放:

f ( α x ) = ∣ α ∣ f ( x ) . f(\alpha \mathbf{x}) = |\alpha| f(\mathbf{x}). f(αx)=αf(x).

第二个性质是我们熟悉的三角不等式:

f ( x + y ) ≤ f ( x ) + f ( y ) . f(\mathbf{x} + \mathbf{y}) \leq f(\mathbf{x}) + f(\mathbf{y}). f(x+y)f(x)+f(y).

第三个性质简单地说范数必须是非负的:

f ( x ) ≥ 0. f(\mathbf{x}) \geq 0. f(x)0.

这是有道理的。因为在大多数情况下,任何东西的最小的大小是0。
最后一个性质要求范数最小为0,当且仅当向量全由0组成。

∀ i , [ x ] i = 0 ⇔ f ( x ) = 0. \forall i, [\mathbf{x}]_i = 0 \Leftrightarrow f(\mathbf{x})=0. i,[x]i=0f(x)=0.

事实上,欧几里得距离是一个 L 2 L_2 L2范数:
假设 n n n维向量 x \mathbf{x} x中的元素是 x 1 , … , x n x_1,\ldots,x_n x1,,xn,其[ L 2 L_2 L2范数是向量元素平方和的平方根:]

( ∥ x ∥ 2 = ∑ i = 1 n x i 2 , \|\mathbf{x}\|_2 = \sqrt{\sum_{i=1}^n x_i^2}, x2=i=1nxi2 ,)

其中,在 L 2 L_2 L2范数中常常省略下标 2 2 2,也就是说 ∥ x ∥ \|\mathbf{x}\| x等同于 ∥ x ∥ 2 \|\mathbf{x}\|_2 x2

1.11.1 L 2 L_2 L2范数

u = torch.tensor([3.0, -4.0])
torch.norm(u)
tensor(5.)

在深度学习中,我们更经常地使用 L 2 L_2 L2范数的平方。

1.11.3 L 1 L_1 L1范数

你还会经常遇到[ L 1 L_1 L1范数,它表示为向量元素的绝对值之和:]

( ∥ x ∥ 1 = ∑ i = 1 n ∣ x i ∣ . \|\mathbf{x}\|_1 = \sum_{i=1}^n \left|x_i \right|. x1=i=1nxi.)

L 2 L_2 L2范数相比, L 1 L_1 L1范数受异常值的影响较小。
为了计算 L 1 L_1 L1范数,我们将绝对值函数和按元素求和组合起来。

torch.abs(u).sum()
tensor(7.)

1.11.3 L p L_p Lp范数

L 2 L_2 L2范数和 L 1 L_1 L1范数都是更一般的 L p L_p Lp范数的特例:

∥ x ∥ p = ( ∑ i = 1 n ∣ x i ∣ p ) 1 / p . \|\mathbf{x}\|_p = \left(\sum_{i=1}^n \left|x_i \right|^p \right)^{1/p}. xp=(i=1nxip)1/p.

1.11.4 F r o b e n i u s Frobenius Frobenius范数

类似于向量的 L 2 L_2 L2范数,[矩阵] X ∈ R m × n \mathbf{X} \in \mathbb{R}^{m \times n} XRm×n(的弗罗贝尼乌斯Frobenius范数(Frobenius norm)是矩阵元素平方和的平方根:)

( ∥ X ∥ F = ∑ i = 1 m ∑ j = 1 n x i j 2 . \|\mathbf{X}\|_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n x_{ij}^2}. XF=i=1mj=1nxij2 .)

Frobenius范数满足向量范数的所有性质,它就像是矩阵形向量的 L 2 L_2 L2范数。
调用以下函数将计算矩阵的Frobenius范数。

torch.norm(torch.ones((4, 9)))
tensor(6.)

1.11.5 范数和目标

在深度学习中,我们经常试图解决优化问题:
最大化分配给观测数据的概率;
最小化预测和真实观测之间的距离。
用向量表示物品(如单词、产品或新闻文章),以便最小化相似项目之间的距离,最大化不同项目之间的距离。
目标,或许是深度学习算法最重要的组成部分(除了数据),通常被表达为范数。

1.12特殊矩阵

  1. 在这里插入图片描述
  2. 在这里插入图片描述
  3. 在这里插入图片描述
  4. 在这里插入图片描述

定义:
设P 是一个 m×n 的 (0,1) 矩阵,如 m≤n且 PxPt=E,则称 P为一个 m×n的置换矩阵。其中Pt是P的转置矩阵,E是m阶单位方阵。

判定条件:
定理 1 当 m≦n时,一个 m×n 的(0,1) 矩阵P为置换矩阵的充要条件是P的每一行恰有一个 1,每一列恰有一个 1。

说明:
1.每个n元置换都对应着唯一的一个置换矩阵。
2.置换矩阵也可以定义为单位矩阵的某些行和列交换后得到的矩阵。
3.一个置换矩阵必然是正交矩阵(如果AA T ^T T=E(E为单位矩阵,A T ^T T表示"矩阵A的转置矩阵")或A T ^T TA=E,则n阶实矩阵A称为正交矩阵。)
4.一个矩阵或向量左乘一个置换矩阵,交换的是该矩阵或向量的行;
5.一个矩阵或向量右乘一个置换矩阵,交换的是该矩阵或向量的列;

  1. 在这里插入图片描述

1.13小结

  • 标量、向量、矩阵和张量是线性代数中的基本数学对象。
  • 向量泛化自标量,矩阵泛化自向量。
  • 标量、向量、矩阵和张量分别具有零、一、二和任意数量的轴。
  • 一个张量可以通过summean沿指定的轴降低维度。
  • 两个矩阵的按元素乘法被称为他们的Hadamard积。它与矩阵乘法不同。
  • 在深度学习中,我们经常使用范数,如 L 1 L_1 L1范数、 L 2 L_2 L2范数和Frobenius范数。
  • 我们可以对标量、向量、矩阵和张量执行各种操作。
  • 更多线性代数知识,你可以参考线性代数运算的在线附录

1.14练习

  1. 我们在本节中定义了形状 ( 2 , 3 , 4 ) (2,3,4) (2,3,4)的张量Xlen(X)的输出结果是什么?
    在这里插入图片描述

  2. 对于任意形状的张量X,len(X)是否总是对应于X特定轴的长度?这个轴是什么?
    在这里插入图片描述
    答:是,这个轴是axis=1。

  3. 运行A/A.sum(axis=1),看看会发生什么。你能分析原因吗?
    在这里插入图片描述

答:报错的内容为A为一个(5,4)的张量,而A_sum_axis1为一个(5,1)的张量,这样的无法进行相除

  1. 考虑一个具有形状 ( 2 , 3 , 4 ) (2,3,4) (2,3,4)的张量,在轴0、1、2上的求和输出是什么形状?
import torch
X = torch.arange(24).reshape(2,3,4)
print(X.sum(axis=0))
print(X.sum(axis=1))
print(X.sum(axis=2))

在这里插入图片描述

  1. linalg.norm函数提供3个或更多轴的张量,并观察其输出。对于任意形状的张量这个函数计算得到什么?
import numpy as np
import torch
X = torch.arange(1.,25.).reshape(6,4)
np.linalg.norm(X)

在这里插入图片描述

答:linalg.norm函数是基于numpy的,功能上与torch.norm()相同,得到张量的Frobenius范数。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

卡拉比丘流形

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值