量子隐形传态

        原理:量子隐形传态(Quantum Teleportation)是一种量子信息传输的过程,它利用了量子纠缠的特性,而不是传统的经典信息传输方法。在量子隐形传态中,量子态(通常是一个粒子的状态,如电子或光子)被传输到空间中的另一个位置,而且这个传输过程并不涉及粒子本身穿越空间的移动。

量子电路图:

Alice要给Bob传递信息q0,则在Alice和Bob之间创造一个纠缠态,即利用q1和q2创造纠缠态。 

一、量子纠缠创建

        纠缠态是量子力学中一个重要而奇特的概念。在量子力学中,粒子的状态不能被完全确定,而是通过波函数描述。纠缠态涉及多个粒子,当它们之间发生相互作用后,它们的状态就会被紧密关联,即使它们之间的距离很远。

        具体而言,如果两个或更多粒子被纠缠在一起,它们的状态就无法被单独描述,而只能通过整体系统的波函数来描述。这就导致了一种奇特的关系:当我们测量一个粒子的状态时,它会立即影响到与之纠缠的其他粒子,即使它们之间的距离很远,似乎瞬间就发生了信息的传递。

1、贝尔态(Bell state)

贝尔态是一种特殊的纠缠态,描述了两个粒子之间的关联。一共有四种情况:

2、创建贝尔态

这里创建的是:

二、初始化量子态

总共涉及三个量子,初始化三个量子的量子态,即求解bell态与q0的张量积:
设q0的量子态为:

初始化三个量子的量子态:

三、CNOT门和H门

1、q0与q1构建CNOT门,即q0为1的时候q1取反,q0为0的时候则不进行操作,故CNOT之后的结果为:

2、q0经过H门,H门为创造纠缠量子态,量子0变为+态,量子1变为-态,具体如下:

故对q0进行操作,结果如下:

四、测量

测量的时候是测量q0和q1,故将结果q0、q1放在一起:

 画线的地方为q2的位置,故存在四种情况:

  1. 如果测量结果是“00”,那么Bob手上的量子比特就是 |ψ〉;
  2. 如果测量结果是“01”,那么Bob对他手上的量子比特作用 X 门就得到了 |ψ〉;
  3. 如果测量结果是“10”,那么Bob需要作用 Z 门;
  4. 如果测量结果是“11”,那么Bob需要先作用 X 门,再作用 Z 门。

五、信息传递 

        Alice将q0和q1的测量结果同经典电路发送给Bob,Bob通过测量的结果进行相应的变换来获得要传输的q0。整个过程里面并未传递q0的任何信息,因为通过了经典电路发送信息,故整个过程不超过光速。

六、代码及结果

1、代码,基于华为云平台MindSpore

from mindquantum.core.circuit import Circuit
from mindquantum.core.gates import H, CNOT, Measure, X, Z, BARRIER
from mindquantum.simulator import Simulator
from IPython.display import display_svg
import numpy as np

psi = np.random.rand(2)
psi = psi / np.linalg.norm(psi)
print(f"psi = {psi}")
bell = np.array([1, 0, 0, 1]) / np.sqrt(2)

init = np.kron(bell,psi)


sim = Simulator("mqvector", 3)
sim.set_qs(init)

circ = Circuit()
circ += CNOT.on(1, 0)
circ += H.on(0)
circ += BARRIER
circ += Measure("q0").on(0)
circ += Measure("q1").on(1)

#采样一百次
#res = sim.sampling(circuit=circ, shots=100)
#print(res)

res = sim.apply_circuit(circ)
print(res)

print(sim.get_qs(True))

# if measurement of q1 is 1, then apply X
if res.samples[0][res.keys_map['q1']] == 1:
    sim.apply_gate(X.on(2))
# if measurement of q2 is 1, then apply Z
if res.samples[0][res.keys_map['q0']] == 1:
    sim.apply_gate(Z.on(2))

print(circ)
print(sim.get_qs(True))

2、结果分析

第一行为q0的初始态,倒数一二行为最后的输出结果,三个量子的顺序为q2q1q0,倒数三四行为测量后的结果。

(1)q0初始态:α=0.82094829,β=0.57100254

         测量之后的叠加态:α=0.57100254 ,β=0.82094829
         测量结果为01,需要对Bob的量子比特进行X门操作从而得到q0

(2)q0初始态:α=0.99829708,β=0.05833466

         测量之后的结果为:α=0.99829707,β=0.05833466 
         测量结果为00,需要对Bob的量子比特不进行操作从而得到q0

(3)q0初始态:α=0.9252867,β=0.37926841

         测量之后的叠加态为:α=-0.37926841,β=0.9252867
         测量结果为11,需要对Bob的量子比特进行X门操作后在进行Z门操作从而得到q0

(4)q0初始态:α=0.35527569,β=0.93476157

         测量之后的叠加态为:α=0.35527569,β=-0.93476157
         测量结果为10,需要对Bob的量子比特进行Z门操作从而得到q0

### 关于量子隐形传态的MATLAB实现 #### 实现概述 为了展示如何在MATLAB中模拟量子隐形传态,下面提供了一个简单的例子。此程序创建了两个纠缠粒子,并通过一系列操作实现了从发送方到接收方的一个未知量子状的转移。 #### 初始化环境与加载工具箱 首先确保安装并启用了MATLAB中的Quantum Computing Toolbox或其他支持量子计算功能的相关包。 ```matlab % 加载必要的库文件 if exist('qubit', 'class') ~= 8 % 检查是否已定义 qubit 类型 error('请先安装适用于MATLAB的量子计算工具箱'); end ``` #### 创建初始条件 设定Alice持有的待传输量子比特以及Bob处的目标位置上的辅助量子比特。 ```matlab % 定义基础向量 |0> 和 |1> zeroState = qubit(0); oneState = qubit(1); % Alice准备要传送的状 (这里假设是一个随机纯) aliceQubit = randUnitary() * zeroState; % Bob持有的一半EPR对 eprPair = kron(zeroState, zeroState) + kron(oneState, oneState); eprPair = eprPair / norm(eprPair); % 归一化处理得到最大纠缠 bobHalfOfEPRpair = partialTrace(eprPair, {2}); % 取出Bob的那一部分 ``` #### 构建Bell基测量装置并对联合系统做贝尔测量 构建用于执行贝尔测量的操作符集合,并应用于由`aliceQubit`和其对应的EPR配对组成的复合体系上。 ```matlab bellBasisOperators = cell(4, 1); for i=0:3 bellBasisOperators{i+1} = ... ([eye(2), (-1)^mod(i,2)*sigmaX()] \... [(-1)^floor((i)/2)*sigmaZ(), eye(2)]) ./ sqrt(2); end measuredResultIndex = ceil(rand*length(bellBasisOperators)); % 随机选取一个结果索引作为“测量”的输出 measurementOperator = bellBasisOperators{measuredResultIndex}; jointSystemBeforeMeasurement = kron(aliceQubit, bobHalfOfEPRpair); postMeasuredJointSystem = measurementOperator' * jointSystemBeforeMeasurement; ``` #### 应用相应的修正门以便完成最终重建 依据上述贝尔测量的结果,在Bob端施加恰当的单比特旋转门以恢复原始输入。 ```matlab correctionGates = {'I', 'X', 'Z', 'Y'}; chosenCorrectionGateStr = correctionGates{measuredResultIndex}; switch chosenCorrectionGateStr case 'I' correctedFinalState = postMeasuredJointSystem; case 'X' correctedFinalState = sigmaX() * postMeasuredJointSystem; case 'Z' correctedFinalState = sigmaZ() * postMeasuredJointSystem; otherwise correctedFinalState = -1j * sigmaY() * postMeasuredJointSystem; end ``` 以上代码片段展示了基于MATLAB平台下的一种简化版量子隐形传态算法框架[^1]。值得注意的是实际应用时还需要考虑更多细节比如噪声影响等因素。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值