摘要
扩散概率模型(Diffusion Probabilistic Model, DPM)近年来在计算机视觉领域获得了广泛的应用,最近的研究进一步揭示了DPM在医学图像分析领域的效用,医学图像分割模型在各种任务中表现出的良好性能强调了这一点。尽管这些模型最初是由UNet架构支撑的,但存在通过集成视觉Transformer机制来提高其性能的潜在途径。然而,简单地组合这两个模型会导致性能不佳。为了有效地将这两种前沿技术集成到医学图像分割中,本文提出了一种新的基于transformer的扩散框架,称为medsegdiv - v2。在具有不同图像模态的20个医学图像分割任务上验证了其有效性。通过综合评估,所提出方法证明了比之前最先进的(SOTA)方法的优越性。
概述
拟解决的问题:MedSegDiff-V2旨在解决医学图像分割中的挑战,特别是在处理具有模糊边界的器官或病变时,如何提高分割的一致性和准确性。此外,该研究还旨在通过整合Transformer机制来增强基于UNet架构的扩散概率模型(DPM)的性能。
创新之处:
- 首次将变换器集成到基于扩散的模型中:这是首次将Transformer机制集成到用于通用医学图像分割的基于扩散的模型中。
- 锚定条件与不确定空间注意力(U-SA):提出了锚定条件和U-SA机制来减少扩散过程中的方差,并提供更多的灵活性以进一步校准预测。
- 语义条件与谱空间Transformer(SS-Former):提出了语义条件和SS-Former来建模分割噪声和语义特征的交互。
- 在多个图像模态的20个器官分割任务中实现SOTA性能。
方法
MedSegDiff-V2的整体流程如图1所示。为了介绍该过程,考虑扩散过程的单步t。噪声掩码xt首先输入到UNet中,称为扩散模型。扩散模型由通过另一个标准UNet从原始图像中提取的分割特征为条件,称为条件模

最低0.47元/天 解锁文章
92





