《MedSegDiff-V2: Diffusion based Medical Image Segmentation with Transformer》AAAI2024,CVPR2023

摘要

扩散概率模型(Diffusion Probabilistic Model, DPM)近年来在计算机视觉领域获得了广泛的应用,最近的研究进一步揭示了DPM在医学图像分析领域的效用,医学图像分割模型在各种任务中表现出的良好性能强调了这一点。尽管这些模型最初是由UNet架构支撑的,但存在通过集成视觉Transformer机制来提高其性能的潜在途径。然而,简单地组合这两个模型会导致性能不佳。为了有效地将这两种前沿技术集成到医学图像分割中,本文提出了一种新的基于transformer的扩散框架,称为medsegdiv - v2。在具有不同图像模态的20个医学图像分割任务上验证了其有效性。通过综合评估,所提出方法证明了比之前最先进的(SOTA)方法的优越性。

概述

拟解决的问题:MedSegDiff-V2旨在解决医学图像分割中的挑战,特别是在处理具有模糊边界的器官或病变时,如何提高分割的一致性和准确性。此外,该研究还旨在通过整合Transformer机制来增强基于UNet架构的扩散概率模型(DPM)的性能。

创新之处

  1. 首次将变换器集成到基于扩散的模型中:这是首次将Transformer机制集成到用于通用医学图像分割的基于扩散的模型中。
  2. 锚定条件与不确定空间注意力(U-SA):提出了锚定条件和U-SA机制来减少扩散过程中的方差,并提供更多的灵活性以进一步校准预测。
  3. 语义条件与谱空间Transformer(SS-Former):提出了语义条件和SS-Former来建模分割噪声和语义特征的交互。
  4. 在多个图像模态的20个器官分割任务中实现SOTA性能

方法

MedSegDiff-V2的整体流程如图1所示。为了介绍该过程,考虑扩散过程的单步t。噪声掩码xt首先输入到UNet中,称为扩散模型。扩散模型由通过另一个标准UNet从原始图像中提取的分割特征为条件,称为条件模

HD-Painter是一种基于扩散模型的文本引导图像修复方法,它能够在不依赖于训练的情况下实现高分辨率(高达2048×2048)的图像修复[^1]。这种方法不仅在定量评估上表现出色,在定性分析上也明显优于当前最先进的方法。其核心优势在于能够利用文本提示来指导修复过程,从而确保生成内容与给定的文本描述高度一致。 扩散模型通常涉及一个前向扩散过程和一个反向扩散过程。前向扩散过程中,数据逐渐被噪声破坏;而在反向扩散过程中,则尝试从噪声中恢复原始数据。对于图像修复任务来说,这一机制允许模型根据上下文信息以及提供的文本提示来填补缺失或损坏的部分。 ### HD-Painter的特点 - **无需训练**:不同于许多需要大量标注数据集进行监督学习的方法,HD-Painter采用了一种完全不需要额外训练的过程。这使得它可以快速适应不同的应用场景而无需重新训练模型。 - **高分辨率支持**:通过引入专门设计的超分辨率框架,该方案成功解决了传统方法难以处理的大尺寸图片修复问题。 - **文本引导能力**:用户可以通过提供详细的文本描述来影响修复结果,这样可以更精确地控制输出图像的内容特征,保证了最终作品符合特定的需求或者创意设想。 - **创新性的架构设计**:为了克服隐空间融合操作可能导致的问题,比如由于mask缩放造成的不准确等挑战[^4],HD-Painter采用了分解双分支扩散结构,有助于提高修复区域与周围环境之间的连贯性和自然度。 此外,值得注意的是,尽管基于前景的图像生成面临诸多挑战如目标完整性受损、前景背景不协调等问题[^2],但HD-Painter通过优化文本嵌入及去噪模型等方式有效缓解了这些障碍,进一步增强了系统的鲁棒性和灵活性。 综上所述,HD-Painter代表了一种新颖且高效的解决方案,适用于那些追求高质量、高保真度修复效果同时又希望保持对生成内容有较强控制力的应用场景。 ```python # 示例代码示意 - 实际应用需参考具体实现细节 def hd_painter_inpaint(image, mask, text_prompt): # 初始化参数... # 执行文本引导的图像修复流程 repaired_image = diffusion_model.repair( image=image, mask=mask, prompt=text_prompt, resolution=(2048, 2048) # 支持高分辨率 ) return repaired_image ```
评论 2
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值