《Diffusion Models Without Attention》CVPR2024

摘要

这篇论文探讨了在高保真图像生成领域,去噪扩散概率模型(Denoising Diffusion Probabilistic Models, DDPMs)的重要性。尽管DDPMs在捕捉复杂视觉分布方面表现出色,但在高分辨率图像生成上面临显著的计算挑战。现有的方法,如在U-Net和Transformer架构中采用patchifying(分块处理),虽然加快了处理速度,但牺牲了表示能力。为了解决这一问题,论文提出了一种新的架构——Diffusion State Space Model(DIFFUSSM),它用一个更可扩展的状态空间模型骨干网络替代了注意力机制。这种方法在不进行全局压缩的情况下有效处理更高分辨率的图像,从而在整个扩散过程中保留了详细的图像表示。论文还强调了在扩散训练中对FLOP(浮点运算次数)高效架构的关注,并在ImageNet和LSUN数据集上的评估表明,DiffuSSM在FID(Fréchet Inception Distance)和Inception Score指标上与或超过现有的带有注意力模块的扩散模型,同时显著减少了总FLOP的使用。

概述

拟解决的问题:论文旨在解决DDPMs在高分辨率图像生成中的计算挑战,特别是在不牺牲图像细节和结构完整性的情况下,减少对高成本注意力机制的依赖。

创新之处:

  • 架构创新:提出了DIFFUSSM,这是一种无需注意力机制的扩散架构,它使用状态空间模型(SSM)骨干网络来处理长序列,避免了传统注意力机制中的二次复杂度问题。
  • 效率提升:通过使用SSM和hourglass(沙漏)架构,DIFFUSSM在保持图像细节的同时,提高了计算效率。
  • 性能提升:在高分辨率图像生成任务中,DiffuSSM在FID和Inception Score等指标上达到了与或超过现有模型的性能,同时显著减少了计算资源的使用。

方法

  1. 输入序列化:将图像数据转换为序列形式,以便通过状态空间模型进行处理。
  2. 门控双向状态空间模型(Gated Bidirectional SSM):这是DIFFUSSM块的核心,用于处理序列数据并捕捉长距离依赖关系。
  3. Hourglass 架构:用于在多层感知机(MLP)层中交替扩展和收缩序列长度,以提高计算效率。
  4. 输出解码:将处理后的序列数据解码回原始图像空间,生成最终的图像输出。

状态空间模型(SSMs)

状态空间模型通过将系统的状态表示为一个向量,并通过状态转移方程和观测方程来描述系统的动态行为。SSMs通常用于描述线性动态系统,但也可以扩展到非线性情况。

 这个表达式描述了状态空间模型中的两个基本方程:状态方程和观测方程。

 

 DIFFUSSM块

Hourglass架构是一种特殊的网络结构,它通过在网络的不同层之间交替扩展和收缩序列长度,来优化计算效率。在DIFFUSSM块中,Hourglass架构的具体实现如下:

  • 扩展层(Upscaling Layer):将序列长度扩展,以捕捉更广泛的上下文信息。
  • 收缩层(Downscaling Layer):将序列长度收缩,以减少计算量并提取关键特征。
  • 重复层(Recurrent Layer):在扩展和收缩层之间交替使用,以实现对序列数据的深度处理。

门控双向SSM是DIFFUSSM块的核心,它结合了状态空间模型和门控机制,以增强模型的处理能力。具体来说:

  • 状态空间模型:使用线性或非线性动态系统来描述序列数据的转换过程。
  • 门控机制:通过引入额外的控制信号(如类别标签或时间步信息),来调节状态空间模型的行为,从而提高模型的灵活性和适应性。

结论

论文得出结论,DIFFUSSM作为一种不依赖注意力机制的扩散模型架构,能够有效地处理高分辨率图像生成任务,同时在计算效率和图像质量上都取得了显著的改进。此外,该架构的提出为未来在需要长距离扩散的其他领域的应用,如高保真音频、视频或3D建模,提供了新的可能性。尽管论文主要关注图像生成任务,但其提出的方法和架构也可能对其他类型的生成任务有启发作用。

引用\[1\]: Stable Diffusion是一个基于Latent Diffusion Models(潜在扩散模型,LDMs)的文图生成(text-to-image)模型。Stable Diffusion在LAION-5B的一个子集上训练了一个Latent Diffusion Models,该模型专门用于文图生成。\[1\]引用\[2\]: 在潜在表示空间上做diffusion操作其主要过程和标准的扩散模型没有太大的区别,所用到的扩散模型的具体实现为time-conditional UNet。\[2\]引用\[3\]: 高分辨率图像合成的普及diffusion models属于基于似然的模型类,其模式覆盖行为使它们容易花费过多的容量(从而计算资源)来建模数据的难以察觉的细节。尽管重加权变分目标旨在通过对初始去噪步骤进行欠采样来解决这一问题,但diffusion models仍然需要计算量,因为训练和评估这样的模型需要在RGB图像的高维空间中反复进行函数评估(和梯度计算)。\[3\] 问题: Latent Diffusion Models是什么? 回答: Latent Diffusion Models(潜在扩散模型,LDMs)是一种用于文图生成的模型。在潜在表示空间上进行diffusion操作,其过程与标准的扩散模型类似。具体实现中使用了time-conditional UNet。这种模型的训练和评估需要在RGB图像的高维空间中进行函数评估和梯度计算,因此需要大量的计算资源。\[1\]\[2\]\[3\] #### 引用[.reference_title] - *1* *2* *3* [Latent Diffusion Models](https://blog.csdn.net/weixin_43135178/article/details/127972532)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值