🍊作者简介:秃头小苏,致力于用最通俗的语言描述问题
🍊往期回顾:凸优化理论基础1–仿射集 凸优化理论基础2——凸集和锥
🍊近期目标:拥有5000粉丝
🍊支持小苏:点赞👍🏼、收藏⭐、留言📩
UWB技术
写在前面
UWB(全称为ultra-wide band 、中文释义超宽带)是一种无线电技术,可以在大部分无线电频谱上使用非常低的能量水平进行短距离、高带宽通信。【此为维基百科上的定义】
首先我先来谈谈通信邻域中一个十分重要的定理——香农定理🌷🌷🌷。这个我想大家或多或少都听到过,其公式如下:
C
=
W
log
2
(
1
+
S
N
)
{\rm{C}} = W{\log _2}(1 + \frac{S}{N})
C=Wlog2(1+NS)
其中,各字母代表含义如下:
- C 信道容量 (网速)
- W 信道带宽 (占用频率范围)
- S 信号功率
- N 噪声功率
- S N \frac{S}{N} NS 信噪比
从这个公式我们可以看出信道容量和带宽W和信噪比 S N \frac{S}{N} NS成正比,即我们要想增加我们的信道容量往往有两种途径,其一是增大信道的带宽,其二则为增大信噪比。本次所讲述的UWB技术即是通过增大信道的带宽来提高信道的容量,UWB使用的带宽一般在500MHz以上,现通过下图来直观感受一下UWB的带宽大小:
正是因为UWB使用了很大的带宽,使其有如下的优势:【常用于室内定位】
- 抗干扰能力强
- 低功耗
- 高精度
下面来介绍一些利用UWB测距的一些方法:
TOA
TOA (Time of Arrival)的原理非常简单,其是通过利用UWB信号到达各个基站的时间从而计算出距离( R = t × c R 为 距 离 , t 为 时 间 , c 为 光 速 R=t \times c \quad R为距离,t为时间,c为光速 R=t×cR为距离,t为时间,c为光速)。通过下图进行理解:现有三个基站 R 1 、 R 2 、 R 3 R_1、R_2、R_3 R1、R2、R3,一物体我们称为标签会向基站发送具有时间信息的数据,基站接收后会计算出信号的传输时间,进而算出标签和基站的距离,那么以该基站为中心,距离R为半径会得到一个圆,则标签必定在此圆上⛳⛳⛳。同理,我们分别以三个基站做圆,其交点即为标签的准确位置。
其所列数学公式为:
{
(
x
1
−
x
0
)
2
+
(
y
1
−
y
0
)
2
=
R
1
2
(
x
2
−
x
0
)
2
+
(
y
2
−
y
0
)
2
=
R
2
2
(
x
3
−
x
0
)
2
+
(
y
3
−
y
0
)
2
=
R
3
2
\left\{ \begin{array}{l} {({x_1} - {x_0})^2} + {({y_1} - {y_0})^2} = {R_1}^2\\ {({x_2} - {x_0})^2} + {({y_2} - {y_0})^2} = {R_2}^2\\ {({x_3} - {x_0})^2} + {({y_3} - {y_0})^2} = {R_3}^2 \end{array} \right.
⎩⎨⎧(x1−x0)2+(y1−y0)2=R12(x2−x0)2+(y2−y0)2=R22(x3−x0)2+(y3−y0)2=R32
其中,
(
x
0
,
y
0
)
(x_0,y_0)
(x0,y0)为标签坐标。
AOA
AOA(Angle of Arrival)的距离测量方法是通过测量信号到达的角度求解目标的位置。其实这个也很容易理解啦,如果我们有两个基站,每个基站都知道标签的一个方向,那么我们就很容易得到这个标签的位置,如下图所示:
其所列数学公式为: tan ( θ i ) = x 0 − x i y 0 − y i , i = 1 , 2 \tan ({\theta _i}) = \frac{{{x_0} - {x_i}}}{{{y_0} - {y_i}}},i = 1,2 tan(θi)=y0−yix0−xi,i=1,2 。其中 θ 1 、 θ 2 \theta_1、\theta_2 θ1、θ2为标签和基站之前的夹角, ( x 0 , y 0 ) (x_0,y_0) (x0,y0)为标签坐标。
TDAO
TDOA(Time Difference of Arrival)是一种利用时间差进行定位的方法。这个方法和TOA相似,但又有些差别。现设定一个基站作为参考基站,通过测量目标到参考基站与其他基站的到达时间差,从而得出待测目标到参考基站与其他基站之间的距离差。因此TDOA的测量值是由每个基站与参考基站的TOA值做差得到,TDOA的测量值在几何上对应的是以参考基站和定位基站为焦点的双曲线。
其所列数学公式为:
{
r
31
=
(
x
3
−
x
)
2
+
(
y
3
−
y
)
2
−
(
x
1
−
x
)
2
+
(
y
1
−
y
)
2
r
32
=
(
x
3
−
x
)
2
+
(
y
3
−
y
)
2
−
(
x
2
−
x
)
2
+
(
y
2
−
y
)
2
\left\{ \begin{array}{l} {r_{31}} = \sqrt {{{({x_3} - x)}^2} + {{({y_3} - y)}^2}} - \sqrt {{{({x_1} - x)}^2} + {{({y_1} - y)}^2}} \\ {r_{32}} = \sqrt {{{({x_3} - x)}^2} + {{({y_3} - y)}^2}} - \sqrt {{{({x_2} - x)}^2} + {{({y_2} - y)}^2}} \end{array} \right.
⎩⎨⎧r31=(x3−x)2+(y3−y)2−(x1−x)2+(y1−y)2r32=(x3−x)2+(y3−y)2−(x2−x)2+(y2−y)2
其中,
r
31
r_{31}
r31表示待测目标到参考基站3与基站2之前的距离差。
三种定位方式比较
AOA定位方法S有较高的定位精度,但是需要在接收端使用天线阵列,这样基站的复杂性和成本都会增加,并且存在多径和非视距环境下AOA估计精度很难保证。TOA定位方法利用UWB具有良好的时间分辨率,基于时间的定位具有良好的定位精度,测量的主要误差来源于多径干扰和非视距传播,另外目标节点与基站之间的时钟同步存在困难,因此TDOA 在实际中实现该技术的可能性与 TOA 相比要高的多,这是因为它不要求基站与待测目标之间时钟同步,只需要每个基站之间时钟同步就能得到 TDOA 值,并且在对到达时间做差的过程中会减小部分误差,定位精度能相对提高。
参考视频:https://www.bilibili.com/video/BV1Ai4y1D754?spm_id_from=333.337.search-card.all.click
如若文章对你有所帮助,那就🛴🛴🛴
咻咻咻咻~~duang~~点个赞呗