最优化理论——基本牛顿法

最优化理论——基本牛顿法

算法思想

用迭代点 x k x_k xk处的一阶导数(梯度)和二阶导数(Hess矩阵)对目标函数进行二次函数近似,然后把二次模型的极小点作为新的迭代点,并不断重复这一过程,直至求得满足精度的近似极小点。

算法步骤

在这里插入图片描述

代码

Matlab代码如下(由阻尼牛顿法修改而来,不保证绝对正确,若有错欢迎指正):

function [x,val,k]=nm(fun,gfun,Hess,x0)
%功能: 用基本牛顿法求解无约束问题:  min f(x)
maxk=100;  %给出最大迭代次数
k=0;  epsilon=10^(-5);
while(k<maxk)
    gk=feval(gfun,x0); %计算梯度
    Gk=feval(Hess,x0);  %计算Hesse阵
    dk=-Gk\gk; %解方程组Gk*dk=-gk, 计算搜索方向
    if(norm(gk)<epsilon), break; end  %检验终止准则
    x0=x0+dk;
    k=k+1;
end
x=x0;
val=feval(fun,x); 

示例

编写基本牛顿法的Matlab程序,并求解无约束优化问题
m i n f ( x ) = 4 x 1 2 + x 2 2 − x 1 2 x 2 minf(x)=4x_1^2+x_2^2-x_1^2x_2 minf(x)=4x12+x22x12x2
该问题的初始点取x=(1,1)T, ϵ = 1 0 − 5 \epsilon =10^{-5} ϵ=105,记录前20次迭代点列.

fun1函数文件:

function f=fun1(x)
f=4*x(1)^2+x(2)^2-x(1)^2*x(2);

gfun1函数文件:

function gf=gfun1(x)
gf=[8*x(1)-2*x(1)*x(2), 2*x(2)-x(1)^2]';

Hess1函数文件:

function He=Hess1(x)
n=length(x);
He=zeros(n,n);
He=[8-2*x(2), -2*x(1); -2*x(1),2];

交互界面输入:

x=[1,1]'
[x,val,k]=nm('fun1','gfun1','Hess1',x)

结果:

初始点最优点x迭代次数k目标函数值f(x)
(1,1)T(-0.1586,-0.1631)T*1.0e-0441.2719e-09
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值