yolov8训练结果分析

数据集

训练集:已知的输入和输出数据集去训练。

验证集:也是一些已知输入和输出的数据集,通过让机器学习去优化调整模型的参数。多次使用而不断调参

测试集:测试模型表现的数据集,根据误差(一般为预测输出与实际输出的不同)来判断一个模型的好坏。仅用与模型评价。

训练结果

混淆矩阵confusion_matrix

纵向(predicted)为预测的标签类别,横向(True)为真实的分类

例如该图  第三行第二列:真实的标签为人“person”但是实验预测的标签为背景“background”,即漏检

第二行第二列:真实的标签为人“person”实验预测标签也为人“person”,即检测正确

第二行第三列:真实的标签为背景“background”而实验预测标签为人“person”,即误检

labels_correlogram

待写,目前没搞懂

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值