数据集
训练集:已知的输入和输出数据集去训练。
验证集:也是一些已知输入和输出的数据集,通过让机器学习去优化调整模型的参数。多次使用而不断调参
测试集:测试模型表现的数据集,根据误差(一般为预测输出与实际输出的不同)来判断一个模型的好坏。仅用与模型评价。
训练结果
混淆矩阵confusion_matrix
纵向(predicted)为预测的标签类别,横向(True)为真实的分类
例如该图 第三行第二列:真实的标签为人“person”但是实验预测的标签为背景“background”,即漏检
第二行第二列:真实的标签为人“person”实验预测标签也为人“person”,即检测正确
第二行第三列:真实的标签为背景“background”而实验预测标签为人“person”,即误检
labels_correlogram
待写,目前没搞懂