图像几何变换和生成对抗网络
通过旋转、反转、剪切图像对乳腺医学图像进行数据增强之后,可以提高模型的准确性。但是当前简单的分割和几何变换在医疗图像数据中不会简单使用,而是会集合生成对抗网络(GAN)结合使用。使用生成对抗网络生成合成图像,以扩展数据集并生成具有多样性的图像。GANs还可用于生成医疗图像的假象。
自监督方法
自监督学习的主要优势在于它能够充分利用未标记的数据,通过使用自监督学习的方法,从未标记的医疗图像中生成伪标签,从而提高数据的利用率,降低数据标记的成本。
乳腺医学图像的传统分割方法
基于阈值的分割方法
之前的研究者通过手动阈值选择和人工干预改进了乳腺肿瘤边缘提取。
基于阈值的分割方法依赖于灰度特征和阈值的对比,受到噪声和应用场景限制,分割效果较为有限。
基于边缘的分割方法
结合马尔科夫随机场(MRF)能量和模糊速度函数的半自动分割方法,以显著改善乳腺癌病灶的分割效果。
基于边缘的方法在处理噪声、弱边缘和复杂结构时存在限制
基于区域的分割方法
- 通过像素值的相似性构建分割区域,以某一像素作为种子像素进行区域的扩大,从而实现有效分割。
- 基于分水岭分割算法和中值滤波处理的方法,以解决传统方法过度依赖人工干预的问题。
- 结合区域生长法和多竞争最小二乘拟合算法,减少其他器官对分割效果的干扰,对深度学习分割任务有积极影响。
基于聚类的分割方法
聚类分割方法无需训练样本就可实现图像分割。
使用复小波域双变量模型结合各向异性扩散函数,通过聚类和自适应方法改进了乳腺核磁图像的分割。
乳腺医学图像的U-net分割方法
- U-Net 网络采用了编码器-解码器结构,旨在解决传统卷积神经网络在图像分割任务中精确定位细节和边界时的困难。
- U-net将低分辨率信息(提供对象类别识别标准)与高分辨率信息(提供精确的分割定位标准)相结合,使得分割精度显著提高。
U-net详解 (侵权联系删除)