(3分钟)总结数据关联(特征匹配&回环检测)

数据关联是SLAM的重要挑战,涉及特征点匹配和长期的闭环检测。特征匹配通过计算描述子距离进行,常用方法包括暴力匹配和RANSAC优化。回环检测则利用词袋模型、描述子法(如Scancontext)以及深度学习方法(如OverlapNet和OverlapTransformer)进行。传统描述子法和深度学习法各有优势,实际工程中常选择传统方法进行回环检测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据关联问题

数据关联(Data Association),也被称为一致性问题(Correspondence Problem)是SLAM面临的挑战之一。数据关联是指建立在不同时间、不同地点获得的传感器测量之间传感器测量与地图特征之间或者地图特征之间的对应关系,以确定它们是否源于环境中同一物理实体的过程。数据关联的正确与否对于SLAM问题中的状态估计至关重要。

In SLAM frameworks, in terms of the update frequency,the data association could be divided into two categories: short-term association (e.g. feature matching) and long-term association (e.g. loop closure detection). (其中数据关联又分为短期数据关联和长期数据关联问题)

Feature Matching: 计算所有特征点描述子距离,表征了特征点的相似程度(采用不同的距离度量范数,浮点型描述子--欧氏距离,二进制描述子--汉明距离)

特征匹配通常有:暴力匹配方法,握手匹配方法,快速近似最近邻匹配方法。

尽管进行了特征匹配,但是仍然存在匹配错误的情况,这时候便是用RANSAC对匹配错误的匹配对进行剔除,来提高特征匹配的效果。

闭环检测则通常有词袋模型来进行检测,下面复制一篇博客的表格来进行总结:

名称

类别

小结

词袋模型

描述子法

经典方案,但适配于摄像头

M2DP

描述子法

计算全局描述子的方法,但计算一帧点云用到时间太多

Scan context

描述子法

比较出色的回环检测法,便于应用到各种激光slam中,但是假回环(假阳性)案例太多

Scan context++

描述子法

改进版scan context,但文章提出两种

Lidar Iris

描述子法

和Scan context 结构近似,但用于搜索匹配描述子的时间过长

Intensity Scan context

描述子法

利用强度信息的Scan context,但无法跑通源码

Imaging Lidar

描述子法

结合了激光雷达和相机回环检测的优势,鲁棒性很好,只是需要用线束均匀分布的激光雷达

OverlapNet

深度学习法

鲁棒性好,泛化能力强,但输入数据预处理步骤很繁琐,不适合部署

OverlapTransformer

深度学习法

改进版OverlapNet,仅需要深度信息,处理速度快,便于部署

LCDNet

深度学习法

有机的结合可点云配准和回环检测的模型

在上面表格中,描述子法也即传统的方法,其通过描述子的计算来判断当前系统是否走到之前的位置,也即判断回环。下面三个是深度学习的方法,通过网络的学习来对回环进行检测,是当前较为热门的回环检测方法。但是大多数工程选择使用传统方法来进行回环检测。

这里的传统方法好像还有一种 。。。 关键时刻记不起来了。行了就这些,等以后想起来,再进行补充。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值