CSPDarkNet53学习

CSP结构

Applying CSPNet to ResNe(X)t

在这里插入图片描述
原文如此介绍:设计出Partial transition layers的目的是最大化梯度联合的差异。其使用梯度流截断的手段避免不同的层学习到重复的梯度信息。得出的结论是,如果能够有效的减少重复的梯度学习,那么网络的学习能力能够大大提升.

Applying CSPNet to DenseNet

在这里插入图片描述

DarkNet53介绍

在这里插入图片描述
由上我们可以对比ResNet50得出其使用了kernel_size=3,stride=1的卷积代替了kernel_size=7,stride=1的卷积,减少了计算量。使用了kernel_size=3,stride=1的卷积代替了maxpool,因此作者认为Max-Pooling降采样会使得输出变得“高频高幅”,因此在后面会导致网格效应。此外DarkNet含有5个Residual相比于Resnet的4个stage,其中Residual Block中分支路使用的为kernel_size=1,kernel_size=3,stride=1的Conv,注意此处并没有进行降采样,而是在concat操作后stride=2的卷积进行下采样。

CSPDarknet53架构

在这里插入图片描述
采用博主@Bubbliiiing的YOLOV4实现讲解

import torch
import torch.nn.functional as F
import
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值