搞懂LQR

正定矩阵
广义定义:设M是n阶方阵,如果对任何非零向量z,都有zTMz> 0,其中zT 表示z的转置,就称M为正定矩阵。
半正定矩阵
定义1 设A是n阶方阵,如果对任何非零向量X,都有X’AX≥0,其中X‘表示X的转置,就称A为半正定矩阵。
先写到着里 以后再补上

LQR(线性二次型调节器,Linear Quadratic Regulator)是一种用于控制系统设计的经典方法,主要用于优化动态系统的性能。它通过最小化一个包含状态和控制输入的二次代价函数来设计最优控制器。以下是关于LQR的相关内容: 1. **LQR的基本原理** LQR适用于线性系统,其目标是最小化性能指标 $ J $,该指标通常表示为: $$ J = \int_{0}^{\infty} (x^T Q x + u^T R u) \, dt $$ 其中: - $ x $ 是系统状态向量 - $ u $ 是控制输入向量 - $ Q $ 是状态权重矩阵,通常为半正定矩阵 - $ R $ 是控制权重矩阵,通常为正定矩阵 2. **LQR的数学模型** LQR基于线性系统模型: $$ \dot{x} = A x + B u $$ 其中: - $ A $ 是系统状态矩阵 - $ B $ 是输入矩阵 通过求解代数Riccati方程(Algebraic Riccati Equation, ARE): $$ A^T P + P A - P B R^{-1} B^T P + Q = 0 $$ 可以得到最优反馈增益矩阵 $ K $: $$ K = R^{-1} B^T P $$ 3. **LQR在Python中的实现** 可以使用Python的`control`库来实现LQR控制器。以下是一个简单的实现示例: ```python import numpy as np import control # 定义系统矩阵 A = np.array([[0, 1], [0, 0]]) B = np.array([[0], [1]]) C = np.eye(2) D = np.zeros((2, 1)) # 定义权重矩阵 Q = np.diag([10, 1]) # 状态权重 R = np.diag([1]) # 控制权重 # 求解LQR增益 K, S, E = control.lqr(A, B, Q, R) print("最优反馈增益矩阵 K:") print(K) ``` 4. **LQR的应用领域** LQR广泛应用于机器人控制、航空航天、自动驾驶、工业过程控制等领域。例如,在无人机控制中,LQR可用于稳定飞行姿态;在自动驾驶车辆中,可用于路径跟踪和速度控制。 5. **LQR的优缺点** - **优点**: - 计算简单,适合实时控制 - 提供最优控制策略 - 易于调整权重矩阵以满足不同性能需求 - **缺点**: - 仅适用于线性系统 - 对模型误差和外部扰动敏感 - 需要准确的系统建模 6. **LQR的扩展形式** LQR的扩展形式包括离散时间LQR(DLQR)和非线性系统的扩展LQR(ELQR)。DLQR用于离散时间系统,其性能指标为: $$ J = \sum_{k=0}^{\infty} (x_k^T Q x_k + u_k^T R u_k) $$ 而ELQR用于处理非线性系统,通常结合扩展卡尔曼滤波(EKF)或模型预测控制(MPC)使用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值