记录一个数据网站

Dataset Information - ClimateEngine.org Support

数据集包括:

可能用到的数据集

降雨——CHIRPS

CHIRPS - ClimateEngine.org Support

CHIRPS: Rainfall Estimates from Rain Gauge and Satellite Observations | Climate Hazards Center - UC Santa Barbara

空间分辨率: 4.8 公里网格(1/20 度)

时间分辨率:每日

时间跨度: 

  • CHIRPS :1981 年至今(每月更新)
  • CHIRPS Pentad: 1981 年至今(每月更新)
  • CHIRPS Prelim Pentad:2015 年至今(每周更新)
  • CHIRPS Pentad/daily: 气候灾害组织红外降水站数据 (CHIRPS) 是一个 35 年以上的准全球降雨数据集。 CHIRPS 跨越 50°S-50°N(以及所有经度),范围从 1981 年至今,融合了内部气候学、CHPclim、0.05° 分辨率卫星图像和现场站数据,创建网格降雨时间序列用于趋势分析和季节性干旱监测。 CHIRPS 由加州大学圣巴巴拉分校气候灾害中心制作。
  • CHIRPS Prelim Pentad: 气候灾害中心红外降水站数据 Prelim (CHIRPS-Prelim) 融合了 CHIRPS 数据与原位降水数据,以消除数据偏差,并提高其准确性。生成 CHIRPS-Prelim 的过程与 CHIRPS 过程类似,主要区别在于它仅依赖于近实时可用的全球电信系统 (GTS) 站。 CHIRP与仅GTS站的混合允许CHIRPS-Prelim的延迟小于5天。请注意,一般来说,CHIRPS-Prelim 和 CHIRPS 的差异在可接受的范围内,因为这两个数据集具有相同的气候平均值。

蒸散发

USGS MODIS ET

USGS MODIS ET - ClimateEngine.org Support

Product Search Global | Early Warning and Environmental Monitoring Program

空间分辨率: 1 公里网格(1/96 度)

时间分辨率:十天、月度、年度 

时间跨度: 2003 年至 2023 年(每 10-12 天更新一次)

变量: 

  • ETa:实际蒸散量(毫米)

VIIRS ET

USGS VIIRS ET - ClimateEngine.org Support

空间分辨率: 1 公里网格(1/96 度)

时间分辨率:十天、月度、年度 

时间跨度: 2012 年至今(每 10-12 天更新一次)

变量: 

  • ETa:实际蒸散量(毫米)

PML V2 ET

PML V2 ET - ClimateEngine.org Support

MODIS PML V2 网格 ET 8 天复合数据

说明: Penman-Monteith-Leuning 蒸散量 V2 (PML_V2) 产品包括蒸散量 (ET)、其三个组成部分以及 500m 和 8- 处的初级生产总值 (GPP)。 2002-2017 年期间的日分辨率,空间范围为 -60°S 至 90°N。 PML_V2产品的主要优点是:通过冠层电导对蒸腾量和GPP进行耦合估计(Gan et al., 2018;Zhang et al., 2019),将ET分为三个组成部分:植被蒸腾量、土壤直接蒸发量和植被拦截降雨的蒸发(Zhang et al., 2016)。

空间分辨率: 500 米网格(1/48 度)

时间分辨率:8天

时间跨度: 2002 年至 2017 年(目前未更新)

变量:

  • GPP:初级产品总值
  • Ec:植被蒸腾作用
  • Es:土壤蒸发
  • Ei:植被冠层的拦截
  • 实际蒸散量 - 在 Climate Engine 中计算为 Ec+Ei+Es 之和

关于AgERA5

官方文档:

Copernicus Climate Data Store | Copernicus Climate Data Store

算法细节解释:

Data Stream 2: AgERA5 historic and near real time forcing data: Algorithm Theoretical Basis (ATBD) - Copernicus Knowledge Base - ECMWF Confluence Wiki

总的来说,AgERA5是基于ERA5数据对于农业方面的再分析与处理。

官方说明:AgERA5 数据集提供 1979 年期间的每日地面气象数据,以 0.1° 网格的空间分辨率呈现。该服务基于第五代 ECMWF 全球气候大气再分析(更广为人知的 ERA5)。 AgERA5“连接”农业领域的用户可以使用新的 ERA5 数据集。它包括农艺相关变量的每日汇总,根据当地的日定义进行调整,并适应 ECMWF HRES 运营模型的更精细的地形、更精细的土地利用模式和更精细的陆地-海洋划分。这些变量包括温度、降水、雪深、湿度、云量和辐射。

(数据被聚合为当地时区的每日时间步长,并以 0.1° 空间分辨率校正为更精细的地形。通过将网格和特定于变量的回归方程应用于以 0.1° 网格插值的 ERA5 数据集,实现了对 0.1° 网格的校正。这些方程在 ECMWF 的高分辨率大气模型 (HRES) 上以 0.1° 分辨率进行训练。通过这种方式,数据可以根据 ECMWF HRES 模型的更精细的地形、更精细的土地利用模式和更精细的海陆划分进行调整。)

处理流程:

  • 0) 从CDS中检索ERA5的原始每小时数据
  • 1)最近邻插值至0.1°网格(ECMWF HRES网格)
  • 2)附加变量的时间聚合和计算
  • 3) 应用位置、变量和季节特定偏差校正以及海洋掩膜

值得注意的是:

所应用的聚合区域定义非常适合西欧和东欧的当地时区,并且主要适用于北美大陆。对于亚洲,实际当地时间定义与研究中的定义之间存在 2-3 小时的偏差。当地时间定义的唯一极端不匹配发生在日期变更线以东的 E4 区。不过从农业角度来看,受影响的地区(太平洋岛屿和阿拉斯加的最西海岸)并不是特别重要。

此外,对原始ERA5的部分气象变量进行处理:

  • 降水量(tp)单位换算:m d^-1 ->毫米d^-1
  • 雪的单位换算(sd;液态水当量):m→厘米
  • 10m风速(m·s-1)来自10m u(10u)和10 m v(10v)风分量:sqrt(10u*2 + 10v*2)
  • 由雪密度 (rsn) 和液态水当量 (sd) 得出的雪深 (cm): (sd / rsn) * 1000 * 100
  • 露点温度的水蒸气分压 (hPa)(Td;Priestley 和 Taylor,1972)):10 * 0.6108 * exp((17.27 * d2m) / (d2m + 237.3))
  • 2m 温度 (t2m) 和露点温度 (d2m) 的相对湿度 (%):100 * (exp((17.27 * d2m) / (237.3 + d2m)) / exp((17.27 * t2m) / (237.3 + t2m)) )

免去了在应用中可能需要进行的计算。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值