GEE图表——利用chirps降水数据进行某个区域累计降水量的图表绘制

该博客详细介绍了如何在Google Earth Engine(GEE)平台上,利用Chirps降水数据集计算并绘制特定区域的累计降水量柱状图。首先,用户需在GEE中搜索并导入Chirps数据,然后选择感兴趣的区域,通过`reduceRegion`计算累计降水量。接着,使用`ui.Chart.image.series`函数绘制按月份分组的柱状图,展示每个月的降水量。最后,用户可以修改代码以探索不同条件下的结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简介

以下是在GEE云平台利用chirps降水数据进行某个区域累计降水量的图表绘制的具体步骤:

1. 打开GEE云平台的网站(https://code.earthengine.google.com)并登录账户。

2. 在左上角的搜索栏中输入“Chirps”,点击回车以搜索Chirps降水数据集。

3. 点击搜索结果中的Chirps数据集并导入到GEE的工作区中。

4. 在左侧的图层面板中,选择Chirps降水数据集,并利用Region of interest(ROI)工具来选定一个你感兴趣的区域。

5. 在代码编辑器中输入以下代码,使用reduceRegion函数计算并输出在ROI中的累计降水量。

``` javascript
// 将降水数据集限制在ROI中的范围内
var chirps_roi = chirps.clip(roi);

// 计算累计降水量
var precip_total = chirps_roi.reduceRegion({
  reducer: ee.Reducer.sum(),
  geometry: roi,
  scale: 5000,
  maxPixels: 1e13
});

// 输出累计降水量
print('Total Precipitation in mm:', precip_total.get('precipitation'));
```

6. 点击运行按钮,等待计算结果,并在控制台中查看总降水量。

7. 点击“图表编辑器”按钮,打开GEE的图表编辑器。

8. 在数据选择器中,选择Chirps数据集,在绘图

### 将 GEE 降水数据导入 GIS 系统的方法 为了将 Google Earth Engine (GEE) 的降水数据成功导入到地理信息系统(GIS),通常有两种主要方法:通过导出功能下载数据至本地文件系统再加载到GIS软件中;或是利用API接口直接在支持Python或其他编程语言的环境中调用并处理这些数据。 #### 方法一:导出数据并通过文件形式载入GIS 当选择此路径时,可以通过 `Export.image.toDrive` 或者其他类似的命令来指定要保存的数据集及其参数设置[^1]。具体实现如下: ```javascript // 定义感兴趣的区域和时间范围内的降水量集合 var precipitationCollection = ee.ImageCollection('UCSB-CHG/CHIRPS/DAILY') .filterDate('2023-01-01', '2023-12-31'); // 计算平均每日降水量 var meanPrecipitation = precipitationCollection.mean(); // 设置导出任务并将结果发送到Google Drive账户下的特定文件夹内 Export.image.toDrive({ image: meanPrecipitation, description: 'mean_precipitation_2023', scale: 500, // 分辨率单位为米 region: areaOfInterest.geometry(), // 用户自定义的研究区边界 }); ``` 完成上述过程之后,在个人电脑上安装有ArcGIS Pro、QGIS等桌面版GIS工具的情况下,可以从Google云端硬盘下载对应的GeoTIFF格式文件,并将其添加到地图文档里进一步分析或制图。 #### 方法二:使用 API 接口实时获取数据 对于那些希望保持最新状态而不必频繁更新静态副本的应用场景来说,采用编程方式连接GEE服务器可能是更好的解决方案之一。以 Python为例,可以先安装必要的库如geemap,接着编写脚本来访问所需资源并绘制图表或者创建交互式的Web应用程序[^4]。 ```python import geemap.eefolium as gee # 初始化Map对象 m = gee.Map() # 加载全球日降雨量数据集 precipitation_data = ee.ImageCollection("UCSB-CHG/CHIRPS/DAILY") # 应用时间和空间过滤器选取目标时间段和地区内的记录 filtered_collection = ( precipitation_data.filterDate("2023-01-01", "2023-12-31") .filterBounds(area_of_interest) ) # 取得均值图像表示全年累计降水平均分布情况 average_rainfall_image = filtered_collection.sum().divide(365).clip(area_of_interest) # 添加图层到当前视窗展示出来 m.addLayer(average_rainfall_image, {'min': 0, 'max': 10}, name="Annual Average Rainfall") # 显示最终成果给用户查看 m.centerObject(area_of_interest) m ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

此星光明

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值