基于无监督医学图像配准论文(1)

论文——An Unsupervised Learning Model for Deformable Medical Image Registration

本文章在此论文基础上所做,有错误欢迎指正。

简要说明

本文讨论的是一种成对的、可变形的三位医学图像配准,将配准定义为一个参数函数,给定一组感兴趣的图像优化其参数。给定一组新的扫描结果,我们可以通过学习到的参数直接计算函数来快速计算一个配准场。我们使用CNN对该函数进行建模,并使用空间变换去重建另一个图像,同时对配准场施加平滑性约束。

本文提出一种新的配准方法,从体积的收集中学习参数化的配准函数。我们是用一个卷积神经网络来实现该函数,它接受两个n-D输入卷,并将一个卷的所有体素输入到另一个卷的映射。网络的参数,既卷积核权值,使用来自感兴趣的数据集的体积对训练进行优化。本质上我们使用一个全局函数优化来取代每个测试图像对传统优化算法的昂贵优化。

优点:
1、无需任何附加信息,如ground truth,landmark等
2、提出参数共享的CNN函数,能够通过函数评估实现配准
3、可以对各种cost function进行优化

正文:

背景

传统典型的体积配准公式,一个(移动或源)体积被扭曲,与第二个(固定或目标)体积对齐,其配准算法大多是基于激活函数迭代优化变换。

公式一:
请添加图片描述
公式二:请添加图片描述其中F、M分别是fixed image和moving image,φ表示Registration field,M (φ) is M 通过 φ扭曲后的图像, 函数 L (·, ·) 测量M (φ) and F的相似度 , Lsmooth (·) 是对 φ正则化, λ是regularization parameter。

对于 φ, Lsim 和 Lsmooth有几种常见公式, φ是一个位移向量场,为每个像素指定从F到M的向量偏移量。Lsim常用指标包括均方像素差异、互信息和互相关,当体积具有不同的强度分布和对比时后两种效果更好。Lsmooth加强了空间光滑变形,通常作为 φ空间梯度上的线性算法。

在工作中我们优化函数参数,以最小化 公式一 形式的expected energy。

注意注意:上面那个带弯曲的符号复制后为L,圆形一竖的是复制后为φ。

相关工作

最近两项工作都提出了更接近无监督方法,都提出了由一个CNN和空间变换函数组成的神经网络,它可以是图像扭曲但不幸的是这些方法是初步的,只在有限个体积子集上进行演示,如3D子区域或者2D切片,并且只支持小转换(对此文章而言,2018年)
相比之下,我们的方法更适用于整3D卷,处理大的变形,并支持任何可微的cost function。

……

Method

将F、M定义为n-D(n维)空间域上的图像体积,在本文中n=3,简单起见,假设F、M包含单通道灰色度值,我们还假设F、M作为预处理步骤,因此体积之间错位的唯一来源是非线性的。
我们使用卷积神经网络CNN建模一个函数,请添加图片描述其中θ是g的学习参数,对于每一个体素p ∈ Ω, Φ(p )是一个位置,使得 F(p )和 M (Φ(p ))定义了相似的解刨位置。方法概述如下图:
请添加图片描述
说明:

  • 网络以F和M作为输入,根据一组参数θ计算φ,既卷积层的核心。我们使用空间变换功能将M(p )扭曲为M (Φ(p )),使模型能够评估M(p )和F的相似性,并更新θ。
  • 使用随机梯度下降,通过最小化一个期望损失函数L(·, ·, ·)来寻找最优参数θ
    类,似于 公式二 使用一个训练数据集如下:请添加图片描述
    其中D是数据集分布,通过对其D中采集的体积对来学习θ^。
模型

g的参数化是一个类似于UNet卷积神经网络的新网络结构,给网络由一个带有跳动连接的解码器组成,负责生成给定F和M的Φ,下图描述了在配准精度和计算之间进行权衡的建议框架的两种变体,两者都采用将M和F连接到二通道3D图像中形成的单一输入。请添加图片描述
说明:

  • 我们在编码器和解码器阶段通过使用ReLU激活应用3D共卷积,卷积核大小为 3* 3 *3。卷积层捕获了输入图像对的层次特征去估计对应关系Φ
  • 在编码器阶段我们使用分层卷积将空间维度减小到一半,直到达到最小的层,是原来的1/16。编码器的连续层超过输入的粗表示,类似于创痛图像配准工作中实用的图像金字塔
  • 最小层卷积核的配准场直到与M和F中对应体素之间的最大期望位移一样大,我们在最小一层的输入图像体积为(1/16)^3上应用卷积
  • 在解码器阶段,我们循序向上采样、卷积(允许Leaky ReLU激活)和联系skip connections,skip connection将在编码器阶段学习到的特征直接传播到生成配准的层中,解码器输出Φ
  • VoxelMorph-1在最终分辨率上少使用一层,在最后三层上使用更少的通道
空间转换参数 (Spatial Transformation Function)

通过最小化M(Φ)和F之间的差异来学习最优参数值,为了重用标准的基于梯度的方法,我们构造了一个基于空间变换网络的可微运算来计算M(Φ).
对于每个体素p,我们在M中计算一个体素位置Φ(p )。因为图像素只定义在内部位置上,所以我们在8个相邻体素上线性插入the values,也就是说,我们执行下面公式:请添加图片描述
Z(Φ(p )) 表示Φ(p )的体素相邻,因为这些操作都是可微的,所以可以在优化过程中反向传播错误。

损失函数(Loss Function)
  • 假设损失函数为 公式二 ,由两部分组成,Lsim出发外观差异,Lsmooth处罚Φ的局部空间变化,在我们的实验中,将Lsim设置为M(Φ)和F的负局部互相关,设F(p ) ^ 和M(Φ(p ))^ 表示已减去局部平均强度的图像,我们计算n^3体积的平均值,本实验中n=9,我们将F和M(Φ)的局部互相关写成:请添加图片描述
    其中pi迭代过p周围n^3体积,越高的CC表示更好地对齐,产生的损失函数:Lsim(F,M,Φ)= -CC(F,M(Φ)),我们实际只使用M(Φ)和F上的卷积运算来计算CC
  • 最小化Lsim将鼓励M(Φ)接近于F,但可能产生间断的Φ,我们在空间梯度上使用扩散正规划来封装一个平滑的φ:
    请添加图片描述
  • 我们使用相邻体素之间的不同来估计空间梯度,完整的Loss Function如下:请添加图片描述
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值